Composite quantile estimation in partial functional linear regression model with dependent errors

被引:2
|
作者
Ping Yu
Ting Li
Zhongyi Zhu
Zhongzhan Zhang
机构
[1] Fudan University,Department of Statistics
[2] Shanxi Normal University,School of Mathematics and Computer Science
[3] Beijing University of Technology,College of Applied Sciences
来源
Metrika | 2019年 / 82卷
关键词
Composite quantile estimation; Functional principal component analysis; Functional linear regression model; Short-range dependence; Strictly stationary; 62G08; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider composite quantile estimation for the partial functional linear regression model with errors from a short-range dependent and strictly stationary linear processes. The functional principal component analysis method is employed to estimate the slope function and the functional predictive variable, respectively. Under some regularity conditions, we obtain the optimal convergence rate of the slope function, and the asymptotic normality of the parameter vector. Simulation studies demonstrate that the proposed new estimation method is robust and works much better than the least squares based method when there are outliers in the dataset or the autoregressive error distribution follows a heavy-tailed distribution. Finally, we apply the proposed methodology to electricity consumption data.
引用
收藏
页码:633 / 656
页数:23
相关论文
共 50 条
  • [31] Varying-coefficient partially functional linear quantile regression models
    Yu, Ping
    Du, Jiang
    Zhang, Zhongzhan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (03) : 462 - 475
  • [32] Composite Quantile Estimation for Kink Model with Longitudinal Data
    Chuang Wan
    Wei Zhong
    Ying Fang
    Acta Mathematica Sinica, English Series, 2023, 39 : 412 - 438
  • [33] Composite Quantile Estimation for Kink Model with Longitudinal Data
    Wan, Chuang
    Zhong, Wei
    Fang, Ying
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (03) : 412 - 438
  • [34] Estimation for semi-functional linear regression
    Tang Qingguo
    STATISTICS, 2015, 49 (06) : 1262 - 1278
  • [35] Rank method for partial functional linear regression models
    Ruiyuan Cao
    Tianfa Xie
    Ping Yu
    Journal of the Korean Statistical Society, 2021, 50 : 354 - 379
  • [36] Rank method for partial functional linear regression models
    Cao, Ruiyuan
    Xie, Tianfa
    Yu, Ping
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2021, 50 (02) : 354 - 379
  • [37] Estimation and inference in partially functional linear regression with multiple functional covariates
    Xu, Wenchao
    Ding, Hui
    Zhang, Riquan
    Liang, Hua
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 209 : 44 - 61
  • [38] PCA-based estimation for functional linear regression with functional responses
    Imaizumi, Masaaki
    Kato, Kengo
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 163 : 15 - 36
  • [39] FLCRM: Functional linear cox regression model
    Kong, Dehan
    Ibrahim, Joseph G.
    Lee, Eunjee
    Zhu, Hongtu
    BIOMETRICS, 2018, 74 (01) : 109 - 117
  • [40] Estimation for functional linear semiparametric model
    Qingguo, Tang
    Minjie, Bian
    STATISTICAL PAPERS, 2021, 62 (06) : 2799 - 2823