An Improved Algorithm for Computing All the Best Swap Edges of a Tree Spanner

被引:0
作者
Davide Bilò
Feliciano Colella
Luciano Gualà
Stefano Leucci
Guido Proietti
机构
[1] Università di Sassari,Istituto di Analisi dei Sistemi ed Informatica
[2] Gran Sasso Science Institute,undefined
[3] Università di Roma “Tor Vergata”,undefined
[4] ETH Zürich,undefined
[5] Università degli Studi dell’Aquila,undefined
[6] CNR,undefined
来源
Algorithmica | 2020年 / 82卷
关键词
Transient edge failure; Swap algorithm; Tree spanner;
D O I
暂无
中图分类号
学科分类号
摘要
A treeσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-spanner of a positively real-weighted n-vertex and m-edge undirected graph G is a spanning tree T of G which approximately preserves (i.e., up to a multiplicative stretch factorσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}) distances in G. Tree spanners with provably good stretch factors find applications in communication networks, distributed systems, and network design. However, finding an optimal or even a good tree spanner is a very hard computational task. Thus, if one has to face a transient edge failure in T, the overall effort that has to be afforded to rebuild a new tree spanner (i.e., computational costs, set-up of new links, updating of the routing tables, etc.) can be rather prohibitive. To circumvent this drawback, an effective alternative is that of associating with each tree edge a best possible (in terms of resulting stretch) swap edge—a well-established approach in the literature for several other tree topologies. Correspondingly, the problem of computing all the best swap edges of a tree spanner is a challenging algorithmic problem, since solving it efficiently means to exploit the structure of shortest paths not only in G, but also in all the scenarios in which an edge of T has failed. For this problem we provide a very efficient solution, running in O(n2log4n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 \log ^4 n)$$\end{document} time, which drastically improves (almost by a quadratic factor in n in dense graphs) on the previous known best result.
引用
收藏
页码:279 / 299
页数:20
相关论文
empty
未找到相关数据