An Improved Algorithm for Computing All the Best Swap Edges of a Tree Spanner

被引:0
|
作者
Davide Bilò
Feliciano Colella
Luciano Gualà
Stefano Leucci
Guido Proietti
机构
[1] Università di Sassari,Istituto di Analisi dei Sistemi ed Informatica
[2] Gran Sasso Science Institute,undefined
[3] Università di Roma “Tor Vergata”,undefined
[4] ETH Zürich,undefined
[5] Università degli Studi dell’Aquila,undefined
[6] CNR,undefined
来源
Algorithmica | 2020年 / 82卷
关键词
Transient edge failure; Swap algorithm; Tree spanner;
D O I
暂无
中图分类号
学科分类号
摘要
A treeσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-spanner of a positively real-weighted n-vertex and m-edge undirected graph G is a spanning tree T of G which approximately preserves (i.e., up to a multiplicative stretch factorσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}) distances in G. Tree spanners with provably good stretch factors find applications in communication networks, distributed systems, and network design. However, finding an optimal or even a good tree spanner is a very hard computational task. Thus, if one has to face a transient edge failure in T, the overall effort that has to be afforded to rebuild a new tree spanner (i.e., computational costs, set-up of new links, updating of the routing tables, etc.) can be rather prohibitive. To circumvent this drawback, an effective alternative is that of associating with each tree edge a best possible (in terms of resulting stretch) swap edge—a well-established approach in the literature for several other tree topologies. Correspondingly, the problem of computing all the best swap edges of a tree spanner is a challenging algorithmic problem, since solving it efficiently means to exploit the structure of shortest paths not only in G, but also in all the scenarios in which an edge of T has failed. For this problem we provide a very efficient solution, running in O(n2log4n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2 \log ^4 n)$$\end{document} time, which drastically improves (almost by a quadratic factor in n in dense graphs) on the previous known best result.
引用
收藏
页码:279 / 299
页数:20
相关论文
共 50 条
  • [1] An Improved Algorithm for Computing All the Best Swap Edges of a Tree Spanner
    Bilo, Davide
    Colella, Feliciano
    Guala, Luciano
    Leucci, Stefano
    Proietti, Guido
    ALGORITHMICA, 2020, 82 (02) : 279 - 299
  • [2] Computing all the best swap edges distributively
    Flocchini, P
    Pagli, L
    Prencipe, G
    Santoro, N
    Widmayer, P
    Zuva, T
    PRINCIPLES OF DISTRIBUTED SYSTEMS, 2005, 3544 : 154 - 168
  • [3] Computing all the best swap edges distributively
    Flocchini, P.
    Pagli, L.
    Prencipe, G.
    Santoro, N.
    Widmayer, P.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2008, 68 (07) : 976 - 983
  • [4] A distributed algorithm for finding all best swap edges of a minimum diameter spanning tree
    Gfeller, Beat
    Santoro, Nicola
    Widmayer, Peter
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2007, 4731 : 268 - +
  • [5] A Distributed Algorithm for Finding All Best Swap Edges of a Minimum-Diameter Spanning Tree
    Gfeller, Beat
    Santoro, Nicola
    Widmayer, Peter
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2011, 8 (01) : 1 - 12
  • [6] A Faster Computation of All the Best Swap Edges of a Shortest Paths Tree
    Bilo, Davide
    Guala, Luciano
    Proietti, Guido
    ALGORITHMS - ESA 2013, 2013, 8125 : 157 - 168
  • [7] A Faster Computation of All the Best Swap Edges of a Shortest Paths Tree
    Bilo, Davide
    Guala, Luciano
    Proietti, Guido
    ALGORITHMICA, 2015, 73 (03) : 547 - 570
  • [8] A Faster Computation of All the Best Swap Edges of a Shortest Paths Tree
    Davide Bilò
    Luciano Gualà
    Guido Proietti
    Algorithmica, 2015, 73 : 547 - 570
  • [9] Finding Best Swap Edges Minimizing the Routing Cost of a Spanning Tree
    Bilo, Davide
    Guala, Luciano
    Proietti, Guido
    ALGORITHMICA, 2014, 68 (02) : 337 - 357
  • [10] Finding Best Swap Edges Minimizing the Routing Cost of a Spanning Tree
    Davide Bilò
    Luciano Gualà
    Guido Proietti
    Algorithmica, 2014, 68 : 337 - 357