Collapsing limits of the Kähler–Ricci flow and the continuity method

被引:0
作者
Yashan Zhang
机构
[1] Peking University,Beijing International Center for Mathematical Research
来源
Mathematische Annalen | 2019年 / 374卷
关键词
53C44; 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Kähler–Ricci flow on certain Calabi–Yau fibration, which is a Calabi–Yau fibration with one dimensional base or a product of two Calabi–Yau fibrations with one dimensional bases. Assume the Kähler–Ricci flow on total space admits a uniform lower bound for Ricci curvature, then the flow converges in Gromov–Hausdorff topology to the metric completion of the regular part of generalized Kähler–Einstein current on the base, which is a compact length metric space homeomorphic to the base. The analogue results for the continuity method on such Calabi–Yau fibrations are also obtained. Moreover, we show the continuity method starting from a suitable Kähler metric on the total space of a Fano fibration with one dimensional base converges in Gromov–Hausdorff topology to a compact metric on the base. During the proof, we show the metric completion of the regular part of a generalized Kähler–Einstein current on a Riemann surface is compact.
引用
收藏
页码:331 / 360
页数:29
相关论文
共 39 条
  • [1] Berman R(2016)K-polystability of Invent. Math. 203 973-1025
  • [2] Boucksom S(2017)-Fano varieties admitting Kähler–Einstein metrics Journal de l’École polytechnique-Mathématiques 4 87-139
  • [3] Jonsson M(1997)Tropical and non-archimedean limits of degenerating families of volume forms J. Differ. Geom. 46 406-480
  • [4] Cheeger J(1999)On the structure of spaces with Ricci curvature bounded from below. I J. Differ. Geom. 52 13-35
  • [5] Colding TH(2004)On the structure of spaces with Ricci curvature bounded from below. II Ann. Math. (2) 159 1247-1274
  • [6] Cheeger J(2009)Numerical characterization of the Kähler cone of a compact Kähler manifold J. Am. Math. Sci. 22 607-639
  • [7] Colding TH(2015)Singular Kähler–Einstein metrics J. Reine Angew. Math. 703 95-113
  • [8] Demailly J-P(2014)The collapsing rate of the Kähler–Ricci flow with regular infinite time singularities Trans. Am. Math. Soc. 366 3907-3924
  • [9] Paun M(2013)Collapsing of products along the Kähler–Ricci flow Duke Math. J. 162 517-551
  • [10] Eyssidieux P(2016)Collapsing of abelian fibred Calabi–Yau manifolds Commun. Anal. Geom. 24 93-113