Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the conformable sense

被引:0
作者
P. Agarwal
M. R. Sidi Ammi
J. Asad
机构
[1] Anand International College of Engineering,Department of Mathematics
[2] Ajman University,Nonlinear Dynamics Research Center (NDRC)
[3] International Center for Basic and Applied Sciences,Department of Mathematics
[4] Harish-Chandra Research Institute,FST Errachidia, MAIS Laboratory, AMNEA Group
[5] Moulay Ismail University of Meknes,Department of Physics, Faculty of Applied Science
[6] Palestine Technical University-PTUK,undefined
来源
Advances in Difference Equations | / 2021卷
关键词
Time scale calculus; Conformable fractional derivative; Existence and uniqueness; Fixed point theorem; 34N05; 26A33; 34A12; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
We study a conformable fractional nonlocal thermistor problem on time scales. Under an appropriate nonrestrictive condition on the resistivity function, we establish existence and uniqueness results. The proof is based on the use of Schauder’s point fixed theorem.
引用
收藏
相关论文
共 71 条
  • [1] Abdeljawad T.(2015)On conformable fractional calculus J. Comput. Appl. Math. 279 57-66
  • [2] Agarwal P.(2016)Fractional calculus operators and their image formulas J. Korean Math. Soc. 53 1183-1210
  • [3] Choi J.(2020)A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques Phys. A, Stat. Mech. Appl. 542 3-22
  • [4] Agarwal P.(1999)Basic calculus on time scales and some of its applications Results Math. 35 1-26
  • [5] Deniz S.(2002)Dynamic equations on time scales: a survey J. Comput. Appl. Math. 141 1128-1156
  • [6] Jain S.(2020)Certain new models of the multi space-fractional Gardner equation Phys. A, Stat. Mech. Appl. 545 1171-1177
  • [7] Alderremy A.A.(1994)The thermistor problem: existence, smoothness, uniqueness, blowup SIAM J. Math. Anal. 25 1253-1258
  • [8] Aly S.(2012)Fractional Euler–Lagrange equation of Caldirola–Kanai oscillator Rom. Rep. Phys. 64 3307-3315
  • [9] Agarwal R.F.(2012)Fractional Pais–Uhlenbeck Oscillator Int. J. Theor. Phys. 51 202-216
  • [10] Bohner M.(2018)Boundary-value problems for the third–order loaded equation with noncharacteristic type-change boundaries Math. Methods Appl. Sci. 41 93-98