Travelling Wave Solutions of the General Regularized Long Wave Equation

被引:0
作者
Hang Zheng
Yonghui Xia
Yuzhen Bai
Luoyi Wu
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Wuyi University,Department of Mathematics and Computer
[3] Qufu Normal University,School of Mathematical Sciences
来源
Qualitative Theory of Dynamical Systems | 2021年 / 20卷
关键词
GRLW equation; Exact solutions; Bifurcation; Dynamical system;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p=2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n+1$$\end{document} and p=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n$$\end{document} respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p=2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n+1$$\end{document}, while it’s not for p=2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2n$$\end{document}.
引用
收藏
相关论文
共 101 条
[1]  
Benjamin T(1972)Model equations for long waves in nonlinear dispersive systems Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci 272 47-78
[2]  
Bona J(2000)Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation J. Nonlinear Sci. 10 603-638
[3]  
Mahony J(2020)Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers Nonlinear Dyn. 100 2817-2821
[4]  
Bona J(2000)Least squares quadratic B-splines finite element method for the regularized long wave equation Comput. Methods Appl. Mech. Eng. 182 205-215
[5]  
McKinney W(2004)Application of cubic B-splines for numerical solution of the RLW equation Appl. Math. Comput. 195 373-389
[6]  
Restrepo J(2018)The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach J. Funct. Anal. 275 988-1007
[7]  
Chen J(2016)Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations Appl. Math. Comput. 285 141-148
[8]  
Luan Z(2016)The first integral method for Wu–Zhang system with conformable time-fractional derivative Calcolo 53 475-485
[9]  
Zhou Q(2017)A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue J. Phys. A Math. Theor. 50 055201-1790
[10]  
Alzahrani A(2010)Bifurcations and new exact travelling wave solutions for the Gerdjikov–Ivanov equation Commun. Nonlinear Sci. Numer. Simul. 15 1783-172