Convergence analysis of the local defect correction method for diffusion equations

被引:0
|
作者
M.J.H. Anthonissen
R.M.M. Mattheij
J.H.M. ten Thije Boonkkamp
机构
[1] Eindhoven University of Technology,Department of Mathematics and Computer Science
来源
Numerische Mathematik | 2003年 / 95卷
关键词
General Expression; Numerical Experiment; Finite Difference; Diffusion Equation; Grid Size;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the convergence analysis of the local defect correction (LDC) method for diffusion equations. We derive a general expression for the iteration matrix of the method. We consider the model problem of Poisson's equation on the unit square and use standard five-point finite difference discretizations on uniform grids. It is shown via both an upper bound for the norm of the iteration matrix and numerical experiments, that the rate of convergence of the LDC method is proportional to H2 with H the grid size of the global coarse grid.
引用
收藏
页码:401 / 425
页数:24
相关论文
共 50 条
  • [1] Convergence analysis of the local defect correction method for diffusion equations
    Anthonissen, MJH
    Mattheij, RMM
    Boonkkamp, JHMT
    NUMERISCHE MATHEMATIK, 2003, 95 (03) : 401 - 425
  • [2] Further analysis of the local defect correction method
    Dept. of Math. and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
    Comput Vienna New York, 2 (117-139):
  • [3] Further analysis of the local defect correction method
    Ferket, PJJ
    Reusken, AA
    COMPUTING, 1996, 56 (02) : 117 - 139
  • [4] Convergence Properties of Local Defect Correction Algorithm for the Boundary Element Method
    Kakuba, Godwin
    Mango, John M.
    Anthonissen, Martijn J. H.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 119 (01): : 207 - 225
  • [5] Convergence analysis of a multigrid method for convection–diffusion equations
    Arnold Reusken
    Numerische Mathematik, 2002, 91 : 323 - 349
  • [6] CONVERGENCE BEHAVIOR OF DEFECT CORRECTION FOR HYPERBOLIC-EQUATIONS
    HEMKER, PW
    DESIDERI, JA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 45 (03) : 357 - 365
  • [7] Convergence analysis of a multigrid method for convection-diffusion equations
    Reusken, A
    NUMERISCHE MATHEMATIK, 2002, 91 (02) : 323 - 349
  • [8] The ε-uniform convergence of a defect correction method on a Shishkin mesh
    Fröhner, A
    Roos, HG
    APPLIED NUMERICAL MATHEMATICS, 2001, 37 (1-2) : 79 - 94
  • [9] Local convergence of the Newton method for generalized equations
    Dontchev, AL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (04): : 327 - 331
  • [10] Local defect correction for the boundary element method
    Kakuba, G.
    Mattheij, R. M. M.
    Anthonissen, M. J. H.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 15 (03): : 127 - 135