Global Existence of a Weak Solution for a Model in Radiation Magnetohydrodynamics

被引:0
作者
Bernard Ducomet
Marek Kobera
Šárka Nečasová
机构
[1] CEA/DAM/DIF,
[2] Mathematical and Physical Faculty of the Charles University in Prague,undefined
[3] Institute of Mathematics of the Academy of Sciences of the Czech Republic,undefined
来源
Acta Applicandae Mathematicae | 2017年 / 150卷
关键词
Radiation magnetohydrodynamics; Navier-Stokes-Fourier system; Weak solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a simplified model based on the Navier-Stokes-Fourier system coupled to a transport equation and the Maxwell system, proposed to describe radiative flows in stars. We establish global-in-time existence for the associated initial-boundary value problem in the framework of weak solutions.
引用
收藏
页码:43 / 65
页数:22
相关论文
共 50 条
[1]  
Amosov A.A.(1985)Well-posedness “in the large” initial and boundary-value problems for the system of dynamical equations of a viscous radiating gas Sov. Phys. Dokl. 30 129-131
[2]  
Bournaveas N.(2001)Averages over spheres for kinetic transport equations; hyperbolic Sobolev spaces and Strichartz inequalities J. Math. Pures Appl. 80 517-534
[3]  
Perthame B.(2004)Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics J. Quant. Spectrosc. Radiat. Transf. 85 385-480
[4]  
Buet C.(1975)On commutators of singular integrals and bilinear singular integrals Trans. Am. Math. Soc. 212 315-331
[5]  
Després B.(1989)Ordinary differential equations, transport theory and Sobolev spaces Invent. Math. 98 511-547
[6]  
Coifman R.(1999)Etude théorique et numérique d’une hiérarchie de modéles aux moments pour le transfert radiatif C. R. Acad. Sci. Paris 329 915-920
[7]  
Meyer Y.(2006)The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars Commun. Math. Phys. 266 595-629
[8]  
DiPerna R.J.(2011)On a model in radiation hydrodynamics Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 797-812
[9]  
Lions P.-L.(2010)Global existence of solutions for the one-dimensional motions of a compressible gas with radiation: An “infrarelativistic model” Nonlinear Anal. 72 3258-3274
[10]  
Dubroca B.(2010)Global weak solutions to the 1D compressible Navier-Stokes equations with radiation Commun. Math. Anal. 8 23-65