Electrical properties of plasticized chitosan-lithium imide with oleic acid-based polymer electrolytes for lithium rechargeable batteries

被引:0
作者
A. M. M. Ali
M. Z. A. Yahya
M. Mustaffa
A. H. Ahmad
R. H. Y. Subban
M. K. Harun
A. A. Mohamad
机构
[1] Universiti Teknologi MARA,Department of Physics, Faculty of Applied Sciences
[2] Universiti Sains Malaysia,School of Materials & Resources Engineering
来源
Ionics | 2005年 / 11卷
关键词
Lithium; Electrical Conductivity; Chitosan; Oleic Acid; Energy Source;
D O I
暂无
中图分类号
学科分类号
摘要
Solid polymer electrolytes (SPEs) were prepared and their electrochemical characteristics were characterized. The composition of SPEs containing chitosan, lithium trifluoromethane sulfonimide (LiN(CF3SO2)2) and oleic acid (OA) was optimized employing ac impedance measurements at various temperatures. The electrical conductivity of the SPEs with OA shows the highest value and the presence of OA does not change the structure of the polymer.
引用
收藏
页码:460 / 463
页数:3
相关论文
共 43 条
[31]   A Chitosan/Poly(ethylene oxide)-Based Hybrid Polymer Composite Electrolyte Suitable for Solid-State Lithium Metal Batteries [J].
Ai, Shun ;
Wang, Tianyi ;
Li, Tao ;
Wan, Yuanxin ;
Xu, Xiaoqian ;
Lu, Hongyan ;
Qu, Tengfei ;
Luo, Shaochuan ;
Jiang, Jing ;
Yu, Xianghua ;
Zhou, Dongshan ;
Li, Liang .
CHEMISTRYSELECT, 2020, 5 (10) :2878-2885
[32]   Structure and Properties of Solid Polymer Electrolyte Based on Chitosan and ZrO2 Nanoparticle for Lithium Ion Battery [J].
Sudaryanto ;
Yulianti, Evi ;
Patimatuzzohrah .
6TH NANOSCIENCE AND NANOTECHNOLOGY SYMPOSIUM (NNS2015), 2016, 1710
[33]   Microstructure, electrical, and transport properties: Graphene oxide reinforced poly (vinyl alcohol)-chitosan based polymer blend electrolytes [J].
Sagar, Rohan N. ;
Ravindrachary, V. ;
Hegde, Shreedatta .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2025, 317
[34]   From Nature to Energy Storage: A Novel Sustainable 3D Cross-Linked Chitosan-PEGGE-Based Gel Polymer Electrolyte with Excellent Lithium-Ion Transport Properties for Lithium Batteries [J].
Xu, Dong ;
Jin, Jun ;
Chen, Chunhua ;
Wen, Zhaoyin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) :38526-38537
[35]   Electrical and Dielectric Properties of Copper Ion Conducting Solid Polymer Electrolytes Based on Chitosan: CBH Model for Ion Transport Mechanism [J].
Aziz, Shujahadeen B. ;
Abdullah, Omed Gh. ;
Saeed, Salah R. ;
Ahmed, Hameed M. .
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (04) :3812-3826
[36]   Study of Optical, Thermal, Electrical, and Impedance Properties of Li4Ti5O12-Based PEO/SA Biopolymer Blend Electrolytes for Lithium-Ion Batteries [J].
Hanash, F. E. ;
Alenizi, Maha A. ;
Alzahrani, Eman ;
Asnag, G. M. ;
Mater, E. H. ;
Alsabah, Yousef A. ;
Al-Muntaser, A. A. ;
Yassin, A. Y. .
ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2025, 14 (02)
[37]   Study of the structure and electrical conductivity of lithium-conducting polymer electrolytes based on PEG-1500—LiX (X = SCN, N(CF3SO2)2) [J].
M. M. Gafurov ;
M. A. Akhmedov ;
K. Sh. Rabadanov ;
N. S. Shabanov ;
A. M. Amirov ;
S. I. Suleymanov ;
M. B. Ataev .
Russian Chemical Bulletin, 2020, 69 :1463-1469
[38]   Study of the structure and electrical conductivity of lithium-conducting polymer electrolytes based on PEG-1500-LiX (X = SCN, N(CF3SO2)2) [J].
Gafurov, M. M. ;
Akhmedov, M. A. ;
Rabadanov, K. Sh. ;
Shabanov, N. S. ;
Amirov, A. M. ;
Suleymanov, S. I. ;
Ataev, M. B. .
RUSSIAN CHEMICAL BULLETIN, 2020, 69 (08) :1463-1469
[39]   Correlation Studies Between Structural and Ionic Transport Properties of Lithium-Ion Hybrid Gel Polymer Electrolytes Based PMMA-PLA [J].
Mazuki, N. F. ;
Kufian, M. Z. ;
Nagao, Y. ;
Samsudin, A. S. .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2022, 30 (05) :1864-1879
[40]   Impacts of ceramic filler and the crystallite size of polymer matrix on the ionic transport properties of lithium triflate/poly (vinylidene fluoride-co-hexafluoropropene) based polymer electrolytes [J].
Kumar, Asheesh ;
Sharma, Raghunandan ;
Das, Malay K. ;
Gajbhiye, Prashik ;
Kar, Kamal K. .
ELECTROCHIMICA ACTA, 2016, 215 :1-11