Resolvent Estimates and Maximal Regularity in Weighted Lq-spaces of the Stokes Operator in an Infinite Cylinder

被引:0
作者
Reinhard Farwig
Ri Myong-Hwan
机构
[1] Darmstadt University of Technology,Department of Mathematics
[2] Academy of Sciences,Institute of Mathematics
来源
Journal of Mathematical Fluid Mechanics | 2008年 / 10卷
关键词
Maximal regularity; Muckenhoupt weights; Stokes resolvent system; Stokes semi-group; infinite cylinder; 35Q30; 76D07;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega = \Sigma \times \mathbb{R}}$$\end{document} be an infinite cylinder of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}, n ≥ 3, with a bounded cross-section \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma \subset \mathbb{R}^{n-1}}$$\end{document} of C1,1-class. We study resolvent estimates and maximal regularity of the Stokes operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{q}(\mathbb{R}; L^{r}_{\omega}(\Sigma))}$$\end{document} for 1 < q, r < ∞ and for arbitrary Muckenhoupt weights ω ∈ Ar with respect to x′ ∈ Σ. The proofs use an operator-valued Fourier multiplier theorem and techniques of unconditional Schauder decompositions based on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{R}}$$\end{document} -boundedness of the family of solution operators for a system in Σ parametrized by the phase variable of the one-dimensional partial Fourier transform.
引用
收藏
页码:352 / 387
页数:35
相关论文
empty
未找到相关数据