Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Omega = \Sigma \times \mathbb{R}}$$\end{document} be an infinite cylinder of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^n}$$\end{document}, n ≥ 3, with a bounded cross-section \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Sigma \subset \mathbb{R}^{n-1}}$$\end{document} of C1,1-class. We study resolvent estimates and maximal regularity of the Stokes operator in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${L^{q}(\mathbb{R}; L^{r}_{\omega}(\Sigma))}$$\end{document} for 1 < q, r < ∞ and for arbitrary Muckenhoupt weights ω ∈ Ar with respect to x′ ∈ Σ. The proofs use an operator-valued Fourier multiplier theorem and techniques of unconditional Schauder decompositions based on the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{R}}$$\end{document} -boundedness of the family of solution operators for a system in Σ parametrized by the phase variable of the one-dimensional partial Fourier transform.