A generalization of d’Alembert formula

被引:0
作者
Yu-Hsien Chang
Cheng-Hong Hong
机构
[1] National Taiwan Normal University,Department of Mathematics
来源
Proceedings Mathematical Sciences | 2007年 / 117卷
关键词
d’Alembert formula; -semigroup;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we find a closed form of the solution for the factored inhomogeneous linear equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \prod\limits_{j = 1}^n {\left( {\frac{d} {{dt}} - A_j } \right)} u(t) = f(t). $$\end{document} Under the hypothesis A1, A2, …, An are infinitesimal generators of mutually commuting strongly continuous semigroups of bounded linear operators on a Banach space X. Here we do not assume that Ajs are distinct and we offer the computational method to get explicit solutions of certain partial differential equations.
引用
收藏
页码:411 / 427
页数:16
相关论文
共 8 条
[1]  
Goldstein G. R.(1996)Structure of solutions to linear evolution equation: Extensions of d’Alembert formula J. Math. Anal. Appl. 201 461-477
[2]  
Goldstein J. A.(1987)An abstract d’Alembert formula SIAM J. Math. Anal. 18 842-856
[3]  
Obrecht E.(1993)Regularizer semigroups, iterated Cauchy problems and equipartition of energy Mh. Math. 115 47-66
[4]  
Goldstein J. A.(undefined)undefined undefined undefined undefined-undefined
[5]  
Sandefur J. T.(undefined)undefined undefined undefined undefined-undefined
[6]  
Goldstein J. A.(undefined)undefined undefined undefined undefined-undefined
[7]  
deLaubenfels R.(undefined)undefined undefined undefined undefined-undefined
[8]  
Sandefur J. T.(undefined)undefined undefined undefined undefined-undefined