Confidence intervals for nonparametric regression functions with missing data: Multiple design case

被引:0
作者
Qingzhu Lei
Yongsong Qin
机构
[1] Guangxi Normal University,School of Mathematical Sciences
来源
Journal of Systems Science and Complexity | 2011年 / 24卷
关键词
Confidence interval; missing at random; nonparametric regression; normal approximation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers two estimators of θ = g (x) in a nonparametric regression model Y = g (x) + ɛ (x ∈ (0, 1)p) with missing responses: Imputation and inverse probability weighted estimators. Asymptotic normality of the two estimators is established, which is used to construct normal approximation based confidence intervals on θ.
引用
收藏
页码:1204 / 1217
页数:13
相关论文
共 21 条
[1]  
Georgiev A. A.(1988)Asymptotic properties of the multivariate Nadaraya-Watson regression function: The fixed design case Statist. Probab. Lett. 7 35-40
[2]  
Georgiev A. A.(1990)Nonparametric multiple function fitting Statist. Probab. Lett. 10 203-211
[3]  
Priestley M. B.(1972)Non-parametric function fitting J. R. Statist. Soc. B. 34 385-392
[4]  
Chao M. T.(1997)On the nonparametric estimation of regression functions J. R. Statist. Soc. B. 39 248-253
[5]  
Benedetti J. K.(1988)Consistent nonparametric multiple regression: The fixed design case J. Multivariate Anal. 25 100-110
[6]  
Georgiev A. A.(1986)Nonparametric function recovering from noisy observations J. Statist. Plann. Infer. 13 1-14
[7]  
Georgiev A. A.(2002)Empirical likelihood-based inference in linear models with missing data Scand. J. Statist. 29 563-576
[8]  
Greblicki W.(2008)Confidence intervals for marginal parameters under fractional linear regression imputation for missing data J. Multivariate Anal. 99 1232-1259
[9]  
Wang Q.(1994)Nonparametric estimation of mean functionals with data missing at random J. Amer. Statist. Assoc. 89 81-87
[10]  
Rao J. N. K.(1994)Estimation of regression coefficients when some regressors are not always observed J. Amer. Statist. Assoc. 89 846-866