A Characterization of Vertex Operator Algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)}$$\end{document}

被引:1
作者
Chongying Dong
Cuipo Jiang
机构
[1] University of California,Department of Mathematics
[2] Sichuan University,School of Mathematics
[3] Shanghai Jiaotong University,Department of Mathematics
关键词
Vertex Operator; Fusion Rule; Vertex Operator Algebra; Verma Module; Irreducible Module;
D O I
10.1007/s00220-009-0964-4
中图分类号
学科分类号
摘要
We study a simple, rational and C2-cofinite vertex operator algebra whose weight 1 subspace is zero, the dimension of weight 2 subspace is greater than or equal to 2 and with c = c̃ = 1. Under some additional conditions it is shown that such a vertex operator algebra is isomorphic to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L(\frac{1}{2},0)\otimes L(\frac{1}{2},0)}$$\end{document}.
引用
收藏
页码:69 / 88
页数:19
相关论文
共 50 条
[1]  
Borcherds R.(1986)Vertex algebras Kac-Moody algebras and the Monster Proc. Natl. Acad. Sci. USA 83 3068-3071
[2]  
Dong C.(1993)Vertex algebras associated with even lattices J. Algebra 160 245-265
[3]  
Dong C.(1998)Rank one lattice type vertex operator algebras and their automorphism groups J. Algebra 208 262-275
[4]  
Griess R.(1998)Framed vertex operator algebras, codes and the moonshine module Commu. Math. Phys. 193 407-448
[5]  
Dong C.(2007)Uniqueness results of the moonshine vertex operator algebra Ameri. J. Math. 129 583-609
[6]  
Griess R.(1997)Regularity of rational vertex operator algebras Adv. in Math. 132 148-166
[7]  
Hoehn G.(1998)Twisted representations of vertex operator algebras Math. Ann. 310 571-600
[8]  
Dong C.(2000)Modular invariance of trace functions in orbifold theory and generalized moonshine Commu. Math. Phys. 214 1-56
[9]  
Griess R.(2004)Rational vertex operator algebras and the effective central charge International Math. Research Notices 56 2989-3008
[10]  
Lam C.(1999)Quantum Galois theory for compact Lie groups J. Algebra 214 92-102