s-Elusive codes in Hamming graphs

被引:0
作者
Daniel R. Hawtin
机构
[1] University of Rijeka,Department of Mathematics
来源
Designs, Codes and Cryptography | 2021年 / 89卷
关键词
Elusive codes; Completely transitive codes; Automorphism groups; Hamming graph; 05E18; 94B60; 05B05;
D O I
暂无
中图分类号
学科分类号
摘要
A code is a subset of the vertex set of a Hamming graph. The set of s-neighbours of a code is the set of all vertices at Hamming distance s from their nearest codeword. A code C is s-elusive if there exists a distinct code C′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C'$$\end{document} that is equivalent to C under the full automorphism group of the Hamming graph such that C and C′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C'$$\end{document} have the same set of s-neighbours. We show that the minimum distance of an s-elusive code is at most 2s+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2s+2$$\end{document}, and that an s-elusive code with minimum distance at least 2s+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2s+1$$\end{document} gives rise to a q-ary t-design with certain parameters. This leads to the construction of: an infinite family of 1-elusive and completely transitive codes, an infinite family of 2-elusive codes, and a single example of a 3-elusive code. Answers to several open questions on elusive codes are also provided.
引用
收藏
页码:1211 / 1220
页数:9
相关论文
共 28 条
[1]  
Berger T(1993)The automorphism group of generalized Reed-Muller codes Discret. Math. 117 1-17
[2]  
Charpin P(2019)On completely regular codes Probl. Inf. Transm. 55 1-45
[3]  
Borges J(1986)The geometry of two-weight codes Bull. Lond. Math. Soc. 18 97-122
[4]  
Rifà J(2006)Hyper-bent functions and cyclic codes J. Comb. Theory Ser. A 113 466-482
[5]  
Zinoviev VA(2016)Entry-faithful 2-neighbour transitive codes Des. Codes Cryptogr. 79 549-564
[6]  
Calderbank R(2017)Alphabet-almost-simple Ars Math. Contemp. 14 345-357
[7]  
Kantor WM(2020)-neighbour-transitive codes Electron. J. Comb. 27 1-16
[8]  
Carlet C(2013)-Neighbour-transitive codes with small blocks of imprimitivity Des. Codes Cryptogr. 67 385-393
[9]  
Gaborit P(1999)Neighbour transitivity on codes in Hamming graphs Eur. J. Comb. 20 647-662
[10]  
Gillespie NI(2013)Completely transitive codes in Hamming graphs Bull. Aust. Math. Soc. 88 286-296