Long-Time Dynamics of Balakrishnan–Taylor Extensible Beams

被引:0
作者
E. H. Gomes Tavares
M. A. Jorge Silva
V. Narciso
机构
[1] University of São Paulo,Institute of Mathematical and Computer Sciences
[2] State University of Londrina,Department of Mathematics
[3] State University of Mato Grosso do Sul,Center of Exact Sciences
来源
Journal of Dynamics and Differential Equations | 2020年 / 32卷
关键词
Extensible beam; Balakrishnan–Taylor damping; Long-time dynamics; Global attractor; Fractal dimension; 35B40; 35B41; 37L30; 35L75; 74H40; 74K99;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with well-posedness and long-time dynamics for a class extensible beams with nonlocal Balakrishnan–Taylor and frictional damping. The related model describes vibrations in nonlinear extensible beams arising in connection with models of oscillation in pipes and supersonic panel flutter. Our main results feature the study of the nonlinear dynamical system generated by the problem. The main novelty is to explore the global Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-regularity (q≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 2$$\end{document}) in time of the nonlocal Balakrishnan–Taylor term and show how it generates a dissipative term that plays an important role in the asymptotic behavior of solutions, mainly in what concerns to achieve the useful property of quasi-stability in the theory of infinite-dimensional dynamical systems.
引用
收藏
页码:1157 / 1175
页数:18
相关论文
共 35 条
  • [1] Benavides Guzmán R(2003)Energy decay estimates for the damped plate equation with a local degenerated dissipation Syst. Control Lett. 48 191-197
  • [2] Tucsnak M(2016)Preface: in memory of A. V. Balakrishnan Appl. Math. Optim. 73 391-392
  • [3] Bensoussan A(2004)Attractors for second order evolution equations with a nonlinear damping J. Dyn. Differ. Equ. 16 469-512
  • [4] Kukavica I(2002)Elastic membrane equation in bounded and unbounded domains EJQTDE 11 1-21
  • [5] Lasiecka I(2011)A class of integro-differential equations incorporing nonlinear and nonlocal damping with applications in nonlinear elastodynamics: existence via time discretization Nonlinearity 24 2523-2546
  • [6] Mitter S(2018)Dynamics of laminated timoshenko beams J. Dyn. Diff. Equ. 30 1489-1507
  • [7] Temam R(1977)Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis J. Sound Vib. 53 471-503
  • [8] Triggiani R(1978)Bifurcation to divergence and flutter flow induced oscillations; an infinite dimensional analysis Automatica 14 367-384
  • [9] Chueshov I(2015)Attractors and their properties for a class of nonlocal extensible beams Discrete Contin. Dyn. Syst. 35 985-1008
  • [10] Lasiecka I(2015)Asymptotic stability of a problem with Balakrishnan–Taylor damping and a time delay Comput. Math. Appl. 70 478-487