Low Mach Number Limit of a Compressible Non-Isothermal Nematic Liquid Crystals Model

被引:0
作者
Jishan Fan
Fucai Li
机构
[1] Nanjing Forestry University,Department of Applied Mathematics
[2] Nanjing University,Department of Mathematics
来源
Acta Mathematica Scientia | 2019年 / 39卷
关键词
compressible non-isothermal liquid crystals; bounded domain; low Mach number limit; 76N10; 35Q30; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the low Mach number limit of a compressible non-isothermal model for nematic liquid crystals in a bounded domain. We establish the uniform estimates with respect to the Mach number, and thus prove the convergence to the solution of the incompressible model for nematic liquid crystals.
引用
收藏
页码:449 / 460
页数:11
相关论文
共 62 条
[1]  
Alazard T(2006)Low Mach number limit of the full Navier-Stokes equations Arch Ration Mech Anal 180 1-73
[2]  
Bendali A(1985)A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains J Math Anal Appl 107 537-560
[3]  
Dominguez J M(1974)Remarks on the Euler equation J Funct Anal 15 341-363
[4]  
Gallic S(2012)Strong solutions to the compressible liquid crystal system Pacific J Math 257 37-52
[5]  
Bourguignon J(2015)Incompressible limit of full compressible magnetohydrodynamic equations with well-prepared data in 3-D bounded domains J Math Anal Appl 427 263-288
[6]  
Brezis H(2013)Incompressible limit of the compressible nematic liquid crystal flow J Funct Anal 264 1711-1756
[7]  
Chu Y(2015)Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain J Differential Equations 258 379-398
[8]  
Liu X(2018)Local well-posedness for a compressible non-isothermal model for nematic liquid crystals J Math Phys 59 031503-672
[9]  
Liu X(2012)A new approach to non-isothermal models for nematic liquid crystals Arch Ration Mech Anal 205 651-257
[10]  
Cui W(2011)On a non-isothermal model for nematic liquid crystals Nonlinearity 24 243-2853