Fault tolerant control for a class of uncertain chaotic systems with actuator saturation

被引:0
作者
Li-Ying Hao
Guang-Hong Yang
机构
[1] Northeastern University,College of Information Science and Engineering
[2] Northeastern University,State Key Laboratory of Synthetical Automation for Process Industries
来源
Nonlinear Dynamics | 2013年 / 73卷
关键词
Fault tolerant control; Chaotic systems; Sliding mode control; Actuator saturation; Synchronization;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the fault tolerant control problem for a class of uncertain chaotic systems via sliding mode control. Both actuator faults and saturation are considered. Under an actuator redundancy assumption, an important lemma is first given and proved to find a lower bound of fault information and saturation degree. Then an adaptive sliding mode controller is designed to guarantee locally asymptotical stability of synchronization error. Compared with existing literature, an obvious relationship between actuator fault information and stability region is revealed. An improved strategy is also proposed to reduce conservativeness when estimating stability region. Finally, a model of Chua’s circuit systems is used to demonstrate these results.
引用
收藏
页码:2133 / 2147
页数:14
相关论文
共 75 条
  • [11] Niamsup P.(2012)Synchronizing different chaotic systems using active sliding mode control Nonlinear Dyn. 69 35-55
  • [12] Yassen M.T.(2012)Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme Nonlinear Dyn. 69 511-517
  • [13] Jia Q.(2004)Modified projective synchronization of fractional-order chaotic systems via active sliding mode control Chaos Solitons Fractals 21 1249-1257
  • [14] Wen S.P.(2003)Synchronization of chaotic systems with parametric uncertainty using active sliding mode control Phys. Lett. A 311 389-395
  • [15] Zeng Z.G.(2004)Robust adaptive synchronization of Rossler and Chen chaotic systems via slide technique IET Control Theory Appl. 151 29-37
  • [16] Huang T.W.(2009)Fault estimation in nonlinear systems using robust/sliding mode observers Math. Comput. Simul. 79 1627-1635
  • [17] Yu Y.G.(2010)Reliable synchronization of nonlinear chaotic systems Optim. Control Appl. Methods 31 303-322
  • [18] Zhang S.C.(2012)Reliable Int. J. Syst. Sci. 43 117-131
  • [19] Ahn C.K.(2009) filter design for a class of discrete-time nonlinear systems with time-varying delay Chaos Solitons Fractals 39 1440-1446
  • [20] Haeri M.(2010)Delay-dependent reliable Nonlinear Dyn. 59 529-534