Bi-spatial Pullback Attractors of Non-autonomous p-Laplacian Equations on Unbounded Thin Domains

被引:0
作者
Fuzhi Li
Mirelson M. Freitas
Jiali Yu
机构
[1] Shangrao Normal University,School of Mathematics & Computer Science
[2] Federal University of Pará,Faculty of Mathematics
[3] Dalian Jiaotong University,School of Science
来源
Applied Mathematics & Optimization | 2023年 / 88卷
关键词
Laplacian equations; Unbounded thin domains; Bi-spatial pullback attractors; Upper semi-continuity; Higher-order integrability; Primary: 35B40; Secondary: 35B41; 37L30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the bi-spatial dynamics of non-autonomous parabolic equations with nonlinear Laplacian on n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}-dimensional unbounded thin domains, where the nonlinearity has a (p, q)-growth exponents. We first prove the existence and uniqueness of tempered pullback attractors in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^2$$\end{document} on n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}-dimensional unbounded thin domains, and then obtain the upper semi-continuity of these attractors in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} when the n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document}-dimensional thin domains degenerates onto a n-dimensional entire space Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document}. Finally by borrowing an inductive method and a bootstrap technique, we show that the difference of solutions near the initial time is higher-order integrable for any space dimension n≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 1$$\end{document}, which further shows the existence of pullback attractors in Lp∩Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L^p\cap L^q$$\end{document}. Based on the higher-order integrability, we find that the obtained pullback attractor is attracting under the topology of Lδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\delta $$\end{document} with δ∈[2,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \in [2,\infty )$$\end{document}.
引用
收藏
相关论文
共 109 条
  • [1] Antoci F(2001)Reaction-diffusion equations on unbounded thin domains Topol. Methods Nonlinear Anal. 18 283-302
  • [2] Prizzi M(2009)Dynamics in dumbbell domains III. Continuity of attractors J. Differ. Equ. 247 225-259
  • [3] Arrieta JM(2011)Semilinear parabolic problems in thin domains with a highly oscillatory boundary Nonlinear Anal. 74 5111-5132
  • [4] Carvalho AN(2021)The J. Differ. Equ. 274 1-34
  • [5] Lozada-Cruz G(2020)-Laplacian equation in thin domains: the unfolding approach Commun. Pure Appl. Anal. 19 1891-1914
  • [6] Arrieta JM(2015)Elliptic and parabolic problems in thin domains with doubly oscillatory boundary J. Differ. Equ. 259 838-872
  • [7] Carvalho AN(2007)Dynamics for a stochastic reaction-diffusion equation with additive noise SIAM J. Math. Anal. 38 1489-1507
  • [8] Silva RP(2021)Synchronization of a stochastic reaction-diffusion system on a thin two-layer domain J. Dyn. Differ. Equ. 206 94-126
  • [9] Pereira MC(2004)Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations with delay on J. Differ. Equ. 251 1225-1253
  • [10] Arrieta JM(2011)Attractors for reaction-diffusion equations on thin domains whose linear part is non-self-adjoint J. Differ. Equ. 71 33-95