Semisimplicity of Some Class of Operator Algebras on Banach Space

被引:0
作者
H. S. Mustafayev
机构
[1] Yuzuncu Yil University,Faculty of Arts and Sciences, Department of Mathematics
来源
Integral Equations and Operator Theory | 2007年 / 57卷
关键词
47Dxx; 46J05; Representation (semi)group; Banach algebra; radical; semisimplicity;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a locally compact abelian group and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf T}{\text{ = }}{\left\{ {T{\left( g \right)}} \right\}}_{{g \in G}} $$\end{document} be a representation of G by means of isometries on a Banach space. We define WT as the closure with respect to the weak operator topology of the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left\{ {\ifmmode\expandafter\hat\else\expandafter\^\fi{f}{\left( {\text{T}} \right)}:f \in L^{1} {\left( G \right)}} \right\}}, $$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ifmmode\expandafter\hat\else\expandafter\^\fi{f}{\left( {\text{T}} \right)} = {\int\limits_G {f{\left( g \right)}T{\left( g \right)}dg} } $$\end{document} is the Fourier transform of f ∈L1(G) with respect to the group T. Then WT is a commutative Banach algebra. In this paper we study semisimlicity problem for such algebras. The main result is that if the Arveson spectrum sp(T) of T is scattered (i.e. it does not contain a nonempty perfect subset) then the algebra WT is semisimple.
引用
收藏
页码:235 / 246
页数:11
相关论文
empty
未找到相关数据