Understanding top-down and bottom-up processes in an ungulate community to define conservation priorities in a desert environment

被引:0
作者
Filipe Rocha
Bruce Bennett
Pedro Monterroso
机构
[1] Universidade do Porto,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado
[2] Universidade do Porto,Departamento de Biologia, Faculdade de Ciências
[3] BIOPOLIS Program in Genomics,undefined
[4] Biodiversity and Land Planning,undefined
[5] CIBIO,undefined
[6] ISCED-Huíla,undefined
[7] Instituto Superior de Ciências da Educação de Huíla,undefined
[8] African Parks Network,undefined
来源
Biodiversity and Conservation | 2022年 / 31卷
关键词
Bottom-up regulation; Surface water dependency; Hartmann’s mountain zebra; Human-wildlife coexistence; Climate change; Namib desert;
D O I
暂无
中图分类号
学科分类号
摘要
Deserts are typically governed by bottom-up forces and are predicted to be further depleted of their resources, exacerbating extinction risk for local wildlife populations. Additionally, human populations living in these ecosystems are predicted to increase, exposing wildlife to additional human-induced top-down constraints and intensifying human-wildlife conflicts. We aim to investigate how surface water availability, forage availability and other landscape factors shape the spatial arrangement of large herbivore populations in a desert region, and to explore wildlife-livestock co-occurrence patterns to inform coexistence strategies that maximize conservation outputs. We fitted Bayesian zero-inflated binomial N-mixture models (Kéry and Royle 2015) to group count data collected over a 4 year period in the northern Namib desert (Iona National Park, Angola), and found that Hartmann’s mountain zebra and gemsbok preferentially forage in suboptimal low productivity flat areas, away from human activities. Conversely, springbok preferentially occurred in more productive and relatively rugged terrain. We also found a reliance of Hartmann’s mountain zebra on natural water sources (βDistWater=-1.04±0.26\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }_{DistWater}=-1.04\pm 0.26$$\end{document} and βDistWater=-0.77±0.20,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }_{DistWater}=-0.77\pm 0.20,$$\end{document} for dry and wet seasons, respectively), and a weaker reliance by gemsbok (βDistWater=0.20±0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }_{DistWater}=0.20\pm 0.10$$\end{document} and βDistWater=-0.15±0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }_{DistWater}=-0.15\pm 0.10$$\end{document}, respectively for dry and wet seasons). Conversely, we found springbok to forage further from available water (βDistWater=0.43±0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }_{DistWater}=0.43\pm 0.05$$\end{document} and βDistWater=0.26±0.06\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\beta }_{DistWater}=0.26\pm 0.06$$\end{document}, for dry and wet seasons, respectively), suggesting this species may be able to balance hydric requirements from dietary water. Our results support that human activities (inc. livestock herding) induce broad scale top-down regulation in landscape use by our target species, which are then susceptible to resource-driven bottom-up forces at a finer scale. These constraints reflect differences between the realized and expected conservation value of Iona National Park, because human-occupied areas force wildlife to suboptimal habitats. Additionally, we found significant stretches of the landscape to be co-occupied by wildlife and livestock, increasing competition for already limited resources. Our results are useful for informing conservation actions, namely through protected area zonation. Securing exclusive access to key resources by wildlife could be of utmost importance to ensure the long-term survival of these species, and to foster sustained human-wildlife coexistence.
引用
收藏
页码:2179 / 2203
页数:24
相关论文
共 280 条
  • [1] Armsworth PR(2018)Is conservation right to go big? Protected area size and conservation return-on-investment Biol Cons 225 229-236
  • [2] Jackson HB(2018)Present and future Köppen-Geiger climate classification maps at 1-km resolution Sci Data 5 180214-231
  • [3] Cho S-H(2019)How free-ranging ungulates with differing water dependencies cope with seasonal variation in temperature and aridity Conservat Physiol 89 215-104
  • [4] Clark M(2014)Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel Biol Rev 2 97-581
  • [5] Fargione JE(2000)Factors affecting vigilance in springbok: importance of vegetative cover, location in herd, and herd size Acta Ethologica 34 570-153
  • [6] Iacona GD(2006)Mechanisms of thermoregulation and water balance in desert ungulates Wildl Soc Bull 83 145-860
  • [7] Kim T(2012)African ungulates and their drinking problems: hunting and predation risks constrain access to water Anim Behav 349 858-1235
  • [8] Larson ER(2015)The unique ecology of human predators Science 8 e55182-368
  • [9] Minney T(2013)Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid savanna PLoS ONE 3 10-472
  • [10] Sutton NA(2007)The shuttle radar topography mission Rev Geophys 360 1232-760