Continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces on anisotropically irregular domains

被引:0
作者
B. V. Trushin
机构
[1] Moscow Institute of Physics and Technology (State University),
来源
Proceedings of the Steklov Institute of Mathematics | 2010年 / 269卷
关键词
STEKLOV Institute; Lebesgue Space; Quasiconformal Mapping; Cone Condition; Steklov Inst;
D O I
暂无
中图分类号
学科分类号
摘要
In our earlier publications, the domains satisfying the flexible σ-cone condition were classified with respect to an anisotropy parameter λ. In the present paper we establish the continuity of embeddings of weighted Sobolev spaces in Lebesgue spaces in these classes of domains. For each class of domains with parameter λ ≠ (1, ..., 1), the theorems obtained are stronger than those in the general case of domains satisfying the flexible σ-cone condition.
引用
收藏
页码:265 / 283
页数:18
相关论文
共 22 条
  • [1] Sobolev S. L.(1936)On Some Estimates Related to the Families of Functions with Square Integrable Derivatives Dokl. Akad. Nauk SSSR 1 267-270
  • [2] Sobolev S. L.(1938)On a Theorem of Functional Analysis Mat. Sb. 4 471-497
  • [3] Reshetnyak Yu. G.(1980)Integral Representations of Differentiable Functions in Domains with Nonsmooth Boundary Sib. Mat. Zh. 21 108-116
  • [4] Buckley S.(1995)Sobolev-Poincaré Implies John Math. Res. Lett. 2 577-593
  • [5] Koskela P.(1990)Hölder Domains and Poincaré Domains Trans. Am. Math. Soc. 319 67-100
  • [6] Smith W.(1998)Isoperimetric Inequalities and Imbedding Theorems in Irregular Domains J. London Math. Soc., Ser. 2 58 425-450
  • [7] Stegenga D. A.(2000)Sobolev Inequalities on Sets with Irregular Boundaries Z. Anal. Anwend. 19 369-380
  • [8] Hajlasz P.(1997)Integral Representations of Functions and Embeddings of Sobolev Spaces on Cuspidal Domains Mat. Zametki 61 201-219
  • [9] Koskela P.(1999)Embedding of Sobolev Spaces on Hölder Domains Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 227 170-179
  • [10] Kilpeläinen T.(2001)Sobolev’s Embedding Theorem for a Domain with Irregular Boundary Mat. Sb. 192 3-26