Stringy instanton counting and topological strings

被引:0
作者
Masahide Manabe
机构
[1] University of Warsaw,Faculty of Physics
来源
Journal of High Energy Physics | / 2015卷
关键词
Topological Strings; Supersymmetric gauge theory; Topological Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study the stringy instanton partition function of four dimensional N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} U(N) supersymmetric gauge theory which was obtained by Bonelli et al. in 2013. In type IIB string theory on ℂ2×T*ℙ1×ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2\times {T}^{*}{\mathrm{\mathbb{P}}}^1\times \mathrm{\mathbb{C}} $$\end{document}, the stringy U(N) instantons of charge k are described by k D1-branes wrapping around the ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1 $$\end{document} bound to N D5-branes on ℂ2×ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2\times {\mathrm{\mathbb{P}}}^1 $$\end{document}. The KK corrections induced by compactification of the ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1 $$\end{document} give the stringy corrections. We find a relation between the stringy instanton partition function whose quantum stringy corrections have been removed and the K-theoretic instanton partition function, or by geometric engineering, the refined topological A-model partition function on a local toric Calabi-Yau threefold. We also study the quantum stringy corrections in the stringy instanton partition function which is not captured by the refined topological strings.
引用
收藏
相关论文
共 50 条
  • [31] Generalized Whittaker states for instanton counting with fundamental hypermultiplets
    Hiroaki Kanno
    Masato Taki
    Journal of High Energy Physics, 2012
  • [32] Topological strings and 5d TN partition functions
    Hayashi, Hirotaka
    Kim, Hee-Cheol
    Nishinaka, Takahiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [33] Integrality structures in topological strings and quantum 2-functions
    Zhu, Shengmao
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [34] Integrality structures in topological strings and quantum 2-functions
    Shengmao Zhu
    Journal of High Energy Physics, 2022
  • [35] Superconformal partition functions and non-perturbative topological strings
    Lockhart, Guglielmo
    Vafa, Cumrun
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10):
  • [36] Superconformal partition functions and non-perturbative topological strings
    Guglielmo Lockhart
    Cumrun Vafa
    Journal of High Energy Physics, 2018
  • [37] Topological strings and 5d TN partition functions
    Hirotaka Hayashi
    Hee-Cheol Kim
    Takahiro Nishinaka
    Journal of High Energy Physics, 2014
  • [38] From topological strings to minimal models
    Omar Foda
    Jian-Feng Wu
    Journal of High Energy Physics, 2015
  • [39] Checks of integrality properties in topological strings
    Mironov, A.
    Morozov, A.
    Morozov, An.
    Ramadevi, P.
    Singh, Vivek Kumar
    Sleptsov, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (08):
  • [40] Quantum geometry of refined topological strings
    Aganagic, Mina
    Cheng, Miranda C. N.
    Dijkgraaf, Robbert
    Krefl, Daniel
    Vafa, Cumrun
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (11):