Stringy instanton counting and topological strings

被引:0
作者
Masahide Manabe
机构
[1] University of Warsaw,Faculty of Physics
来源
Journal of High Energy Physics | / 2015卷
关键词
Topological Strings; Supersymmetric gauge theory; Topological Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study the stringy instanton partition function of four dimensional N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=2 $$\end{document} U(N) supersymmetric gauge theory which was obtained by Bonelli et al. in 2013. In type IIB string theory on ℂ2×T*ℙ1×ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2\times {T}^{*}{\mathrm{\mathbb{P}}}^1\times \mathrm{\mathbb{C}} $$\end{document}, the stringy U(N) instantons of charge k are described by k D1-branes wrapping around the ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1 $$\end{document} bound to N D5-branes on ℂ2×ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{C}}}^2\times {\mathrm{\mathbb{P}}}^1 $$\end{document}. The KK corrections induced by compactification of the ℙ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^1 $$\end{document} give the stringy corrections. We find a relation between the stringy instanton partition function whose quantum stringy corrections have been removed and the K-theoretic instanton partition function, or by geometric engineering, the refined topological A-model partition function on a local toric Calabi-Yau threefold. We also study the quantum stringy corrections in the stringy instanton partition function which is not captured by the refined topological strings.
引用
收藏
相关论文
共 50 条
  • [21] Blowup equations for refined topological strings
    Huang, Min-xin
    Sun, Kaiwen
    Wang, Xin
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10):
  • [22] Resurgence and topological strings
    Vonk, M.
    STRING-MATH 2014, 2016, 93 : 221 - 232
  • [23] Hypermultiplets and topological strings
    Rocek, M
    Vafa, C
    Vandoren, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (02): : 062
  • [24] Instanton calculus in R-R background and the topological string
    Billo, Marco
    Frau, Marialuisa
    Fucito, Francesco
    Lerda, Alberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (11):
  • [25] Integrality, duality and finiteness in combinatoric topological strings
    Robert de Mello Koch
    Yang-Hui He
    Garreth Kemp
    Sanjaye Ramgoolam
    Journal of High Energy Physics, 2022
  • [26] Integrality, duality and finiteness in combinatoric topological strings
    Koch, Robert de Mello
    He, Yang-Hui
    Kemp, Garreth
    Ramgoolam, Sanjaye
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (01)
  • [27] ABJM on ellipsoid and topological strings
    Hatsuda, Yasuyuki
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (07):
  • [28] ABJM on ellipsoid and topological strings
    Yasuyuki Hatsuda
    Journal of High Energy Physics, 2016
  • [29] Deformations of topological open strings
    Hofman, C
    Ma, WK
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (01):
  • [30] Generalized Whittaker states for instanton counting with fundamental hypermultiplets
    Kanno, Hiroaki
    Taki, Masato
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05):