On the Koenigs function of semigroups of holomorphic self-maps of the unit disc

被引:0
|
作者
Filippo Bracci
Manuel D. Contreras
Santiago Díaz-Madrigal
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[2] Universidad de Sevilla,Camino de los Descubrimientos, s/n, Departamento de Matemática Aplicada II and IMUS
来源
Analysis and Mathematical Physics | 2018年 / 8卷
关键词
Semigroups of holomorphic functions; Primary 37C10; 30C35; Secondary 30D05; 30C80; 37F99; 37C25;
D O I
暂无
中图分类号
学科分类号
摘要
Let (ϕt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi _t)$$\end{document} be a semigroup of holomorphic self-maps of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}. In this note, we use an abstract approach to define the Koenigs function of (ϕt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi _t)$$\end{document} and “holomorphic models” and show how to deduce the existence and properties of the infinitesimal generator of (ϕt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi _t)$$\end{document} from this construction.
引用
收藏
页码:521 / 540
页数:19
相关论文
共 50 条