A Class of Univalent Functions with Real Coefficients

被引:0
作者
Milutin Obradović
Nikola Tuneski
机构
[1] University of Belgrade,Department of Mathematics, Faculty of Civil Engineering
[2] Ss. Cyril and Methodius University in Skopje,Department of Mathematics and Informatics, Faculty of Mechanical Engineering
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
Univalent; Real coefficients; Fekete–Szegő; Logarithmic coefficients; Coefficient estimates; 30C45; 30C50; 30C55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study class S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {S}^+$$\end{document} of univalent functions f such that zf(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{z}{f(z)}$$\end{document} has real and positive coefficients. For such functions, we give estimates of the Fekete–Szegő functional and sharp estimates of their initial coefficients and logarithmic coefficients. Also, we present necessary and sufficient conditions for f∈S+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {S}^+$$\end{document} to be starlike of order 1 / 2.
引用
收藏
页码:2875 / 2886
页数:11
相关论文
共 8 条
[1]  
Obradovic M(2009)Coefficient characterization for certain classes of univalent functions Bull. Belg. Math. Soc. Simon Stevin 16 251-263
[2]  
Ponnusamy S(2016)Geometric studies on the class Bull. Malays. Math. Sci. Soc. 39 1259-1284
[3]  
Obradovic M(2018)Logarithmic coefficients and a coefficient conjecture for univalent functions Monatshefte Math. 185 489-501
[4]  
Ponnusamy S(undefined)undefined undefined undefined undefined-undefined
[5]  
Wirths KJ(undefined)undefined undefined undefined undefined-undefined
[6]  
Obradovic M(undefined)undefined undefined undefined undefined-undefined
[7]  
Ponnusamy S(undefined)undefined undefined undefined undefined-undefined
[8]  
Wirths KJ(undefined)undefined undefined undefined undefined-undefined