Groups with all proper subgroups nilpotent-by-finite rank

被引:0
作者
M. R. Dixon
M. J. Evans
H. Smith
机构
[1] Department of Mathematics,
[2] University of Alabama,undefined
[3] Tuscaloosa,undefined
[4] AL. 35487-0350,undefined
[5] U.S.A.,undefined
[6] Department of Mathematics,undefined
[7] Bucknell University,undefined
[8] Lewisburg,undefined
[9] PA. 17837,undefined
[10] U.S.A.,undefined
来源
Archiv der Mathematik | 2000年 / 75卷
关键词
Simple Group; Proper Subgroup; Simple Image; Infinite Simple Group;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the authors consider the class of groups in which every proper subgroup is nilpotent-by-finite rank. There exist infinite simple groups with this property. Among the results proved is the theorem that a locally soluble-by-finite such group that is not a perfect p-group is itself nilpotent-by-finite rank, provided the group has no infinite simple images.
引用
收藏
页码:81 / 91
页数:10
相关论文
empty
未找到相关数据