On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems

被引:0
作者
Nobuyoshi Fukagai
Kimiaki Narukawa
机构
[1] Tokushima University,Department of Mathematics, Faculty of Engineering
[2] Naruto University of Education,Department of Mathematics
[3] Takashima,undefined
来源
Annali di Matematica Pura ed Applicata | 2007年 / 186卷
关键词
Quasilinear elliptic problem; Multiple positive solutions; Orlicz–Sobolev spaces;
D O I
暂无
中图分类号
学科分类号
摘要
We study a quasilinear elliptic problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \left\{\begin{array}{ll} -\,{\rm div}(\phi(|\nabla u|)\nabla u) = \lambda f(x,u) &\quad\text{in ${\rm \Omega}$} \\ u = 0 &\quad\text{on $\partial{\rm \Omega}$}\end{array}\right.$$ \end{document} with nonhomogeneous principal part φ. Under the hypothesis f(x,t)= o(φ(t)t) at t= 0 and ∞, the existence of multiple positive solutions is proved by using the variational arguments in the Orlicz–Sobolev spaces.
引用
收藏
页码:539 / 564
页数:25
相关论文
共 27 条
[1]  
Ambrosetti A.(1994)Combined effects of concave and convex nonlinearities in some elliptic problems J. Funct. Anal. 122 519-543
[2]  
Brezis H.(1993) versus C. R. Acad. Sci. Paris, Sér. I Math. 317 465-472
[3]  
Cerami G.(1998) local minimizers Abstr. Appl. Anal. 3 41-64
[4]  
Brezis H.(1998)Variational inequalities for energy functionals with nonstandard growth conditions Z. Anal. Anwendungen 17 393-415
[5]  
Nirenberg L.(1995)Variational integrals on Orlicz–Sobolev spaces Hiroshima Math. J. 25 19-41
[6]  
Fuchs M.(2003)Nonlinear eigenvalue problem for a model equation of an elastic surface Commun. Contemp. Math. 5 737-759
[7]  
Li G.(2000)Multiple positive solutions of nonlinear eigenvalue problems associated to a class of Commun. Contemp. Math. 2 385-404
[8]  
Fuchs M.(1999)-Laplacian like operators Nonlinear Diff. Eqns. Appl. 6 207-225
[9]  
Osmolovski V.(1989)Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations Ann. Inst. H. Poincaré Anal. Non Linéaire 6 321-330
[10]  
Fukagai N.(1989)On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting Nonlinear Anal. 13 879-902