Probabilistic causes in Markov chains

被引:0
作者
Robin Ziemek
Jakob Piribauer
Florian Funke
Simon Jantsch
Christel Baier
机构
[1] Technische Universität Dresden,
来源
Innovations in Systems and Software Engineering | 2022年 / 18卷
关键词
Markov chain; Model checking; Causality; Expected costs;
D O I
暂无
中图分类号
学科分类号
摘要
By combining two of the central paradigms of causality, namely counterfactual reasoning and probability-raising, we introduce a probabilistic notion of cause in Markov chains. Such a cause consists of finite executions of the probabilistic system after which the probability of an ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-regular effect exceeds a given threshold. The cause, as a set of executions, then has to cover all behaviors exhibiting the effect. With these properties, such causes can be used for monitoring purposes where the aim is to detect faulty behavior before it actually occurs. In order to choose which cause should be computed, we introduce multiple types of costs to capture the consumption of resources by the system or monitor from different perspectives, and study the complexity of computing cost-minimal causes.
引用
收藏
页码:347 / 367
页数:20
相关论文
共 50 条
  • [31] EXTREME EVENTS OF MARKOV CHAINS
    Papastathopoulos, I.
    Strokorb, K.
    Tawn, J. A.
    Butler, A.
    ADVANCES IN APPLIED PROBABILITY, 2017, 49 (01) : 134 - 161
  • [32] MARKOV CHAINS AND CREDIT RISK
    Vojtekova, Maria
    ZNALOSTI PRO TRZNI PRAXI 2013: VEREJNA EKONOMIKA - SOUCASNOST A PERSPEKTIVA: VEREJNA EKONOMIKA SOUCASNOST A PERSPEKTIVA. PUBLIC ECONOMY - PRESENT SITUATION AND FUTURE PROSPECTS, 2013, : 151 - 156
  • [33] Fields from Markov chains
    Justesen, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4358 - 4362
  • [34] On transience conditions for Markov chains
    Foss, SG
    Denisov, DÉ
    SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (02) : 364 - 371
  • [35] Markov chains in a field of traps
    Pemantle, R
    Volkov, S
    JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (02) : 561 - 569
  • [36] Rotor walks and Markov chains
    Holroyd, Alexander E.
    Propp, James
    ALGORITHMIC PROBABILITY AND COMBINATORICS, 2010, 520 : 105 - +
  • [37] ALGEBRAIC MULTIGRID FOR MARKOV CHAINS
    De Sterck, H.
    Manteuffel, T. A.
    Mccormick, S. F.
    Miller, K.
    Ruge, J.
    Sanders, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (02) : 544 - 562
  • [38] On the convergence of nonlinear Markov chains
    O. A. Butkovsky
    Doklady Mathematics, 2012, 86 : 824 - 826
  • [39] Are Parametric Markov Chains Monotonic?
    Spel, Jip
    Junges, Sebastian
    Katoen, Joost-Pieter
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS (ATVA 2019), 2019, 11781 : 479 - 496
  • [40] Markov chains in a stratified environment
    Bremont, Julien
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (02): : 751 - 798