Stability of symmetric closed characteristics on symmetric compact convex hypersurfaces in ℝ2n under a pinching condition

被引:0
作者
Hui Liu
机构
[1] Nankai University,Chern Institute of Mathematics
来源
Acta Mathematica Sinica, English Series | 2012年 / 28卷
关键词
Symmetric compact convex hypersurfaces; symmetric closed characteristics; Hamiltonian systems; index iteration; stability; 58E05; 37J45; 37C75;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, let Σ ⊂ ℝ2n be a symmetric compact convex hypersurface which is (r, R)-pinched with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{R} {r} < \sqrt {\frac{5} {3}} $\end{document} . Then Σ carries at least two elliptic symmetric closed characteristics; moreover, Σ carries at least \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E\left[ {\tfrac{{n - 1}} {2}} \right] + E\left[ {\tfrac{{n - 1}} {3}} \right] $\end{document} non-hyperbolic symmetric closed characteristics.
引用
收藏
页码:885 / 900
页数:15
相关论文
共 23 条
[1]  
Liu C.(2002)Multiplicity of closed characteristics on symmetric convex hypersurfaces in Math. Ann. 323 201-215
[2]  
Long Y.(2010)Stability of closed characteristics on compact hypersurfaces in Advanced Nonlinear Studies 10 263-272
[3]  
Zhu C.(1992) under a pinching condition C. R. Acad. Sci. Paris Sér. I 315 1413-1415
[4]  
Wang W.(1982)Les systèmes hamiltoniens convexes et pairs ne sont pas ergodiques en général Ann. of Math. 116 213-247
[5]  
Dell’Antoio G.(1978)Closed geodesics on positively curved manifolds Invent. Math. 45 139-174
[6]  
D’Onofrio B.(1999)Generalized comological index throries for Lie group actions with an application to bifurcation equations for Hamiltonian systems Pacific J. Math. 187 113-149
[7]  
Ekeland I.(2000)Bott formula of the Maslov-type index theory Advances in Math. 154 76-131
[8]  
Ballmann W.(1984)Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics Ann. Inst. H. Poincaré Anal. Non Linéaire 1 285-294
[9]  
Thorbergsson G.(1984)Multiple orbits for Hamiltonian systems on starshaped ernergy surfaces with symmetry Ann. Inst. H. Poincaré Anal. Non Linéaire 1 19-78
[10]  
Ziller W.(1980)Une théorie de Morse pour les systèmes hamiltoniens convexes Ann. of Math. 112 283-319