Long-time behavior of scalar viscous shock fronts in two dimensions

被引:30
作者
Goodman J. [1 ]
Miller J.R. [2 ]
机构
[1] Courant Institute of Mathematical Sciences, New York University, New York
[2] Department of Mathematics, Georgetown University, Washington
关键词
Long-time behavior; Shock fronts; Viscous conservation law;
D O I
10.1023/A:1021977329306
中图分类号
学科分类号
摘要
We prove nonlinear stability in L1 of planar shock front solutions to a viscous conservation law in two spatial dimensions and obtain an expression for the asymptotic form of small perturbations. The leading-order behavior is shown rigorously to be governed by an effective diffusion coefficient depending on forces transverse to the shock front. The proof is based on a spectral analysis of the linearized problem. © 1999 Plenum Publishing Corporation.
引用
收藏
页码:255 / 277
页数:22
相关论文
共 16 条
[1]  
Bronsard, L., Hilhorst, D., On the slow dynamics for the Cahn-Hilliard equation in one space dimension (1992) Proc. Roy. Soc. London Ser. A, 439, pp. 669-682
[2]  
Caginalp, G., The dynamics of a conserved phase field system: Stefan-like, Hele-Shaw, and Cahn-Hilliard models as asymptotic (1990) IMA J. Appl. Math., 44, pp. 77-94
[3]  
Gelfand, I.M., Some problems in the theory of quasilinear equations (1959) Uspekhi Mat. Nauk (N.S.), 14, pp. 87-158
[4]  
(1963) Am. Math. Soc. Transl., 29 (2). , English translation
[5]  
Goodman, J., Nonlinear asymptotic stability of viscous shock profiles for conservation laws (1986) Arch. Ration. Mech. Anal., 95, pp. 325-344
[6]  
Goodman, J., Stability of viscous scalar shock fronts in several dimensions (1989) Trans. AMS, 311, pp. 683-695
[7]  
Kato, T., (1976) Perturbation Theory for Linear Operators, , Springer, New York
[8]  
Kawashima, S., Matsumura, A., Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion (1985) Comm. Math. Phys., 101, pp. 97-127
[9]  
Jones, C.K.R.T., Gardner, R., Kapitula, T., Stability of travelling waves for nonconvex scalar viscous conservation laws (1993) Comm. Pure Appl. Math., 46, pp. 505-526
[10]  
Liu, T.P., Nonlinear stability of shock waves for viscous conservation laws (1985) Mem. Am. Math. Soc., 328