Families of periodic orbits in the restricted four-body problem

被引:0
作者
A. N. Baltagiannis
K. E. Papadakis
机构
[1] University of Patras,Department of Engineering Sciences, Division of Applied Mathematics and Mechanics
来源
Astrophysics and Space Science | 2011年 / 336卷
关键词
Asymptotic orbits; Four-body problem; Periodic orbits; Stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, families of simple symmetric and non-symmetric periodic orbits in the restricted four-body problem are presented. Three bodies of masses m1, m2 and m3 (primaries) lie always at the apices of an equilateral triangle, while each moves in circle about the center of mass of the system fixed at the origin of the coordinate system. A massless fourth body is moving under the Newtonian gravitational attraction of the primaries. The fourth body does not affect the motion of the three bodies. We investigate the evolution of these families and we study their linear stability in three cases, i.e. when the three primary bodies are equal, when two primaries are equal and finally when we have three unequal masses. Series, with respect to the mass m3, of critical periodic orbits as well as horizontal and vertical-critical periodic orbits of each family and in any case of the mass parameters are also calculated.
引用
收藏
页码:357 / 367
页数:10
相关论文
共 44 条
[1]  
Álvarez-Ramirez M.(2009)Dynamical aspects of an equilateral restricted four-body problem Math. Probl. Eng. 23 129-146
[2]  
Vidal C.(1906)Sur les solutions periodiques voisines des positions d’equilibre relatif, dans le probleme des n corps Bull. Astron. 34 57-79
[3]  
Andoyer M.H.(2011)Equilibrium points and their stability in the restricted four-body problem Int. J. Bifurc. Chaos 137 311-335
[4]  
Baltagiannis A.N.(1957)Permanent configurations in the problem of four bodies and their stability Sov. Astron. 26 247-263
[5]  
Papadakis K.E.(1967)The Trojan manifold in the system Earth-Moon Mon. Not. R. Astron. Soc. 16 393-394
[6]  
Brumberg V.A.(1977)Blue sky catastrophes in reversible and Hamiltonian systems Indiana Univ. Math. J. 28 992-1007
[7]  
Deprit A.(1843)Examen d’une classe d’equations differentielles et application a un cas particulier du probleme des trois corps Compt. Rend. 28 415-426
[8]  
Henrard J.(1965)Exploration numérique du problème restreint. II Masses égales, stabilité des orbites périodiques Ann. Astrophys. 250 298-316
[9]  
Palmore J.(1973)Vertical stability of periodic orbits in the restricted problem. I. Equal masses Astron. Astrophys. 464 870-872
[10]  
Price E.(1933)Räumliche infinitesimale Bahnen um die Librationspunkte im Geradlinien-Fall der (3+1)-Körper Astron. Nachr. 216 21-22