The Compact Discontinuous Galerkin Method for Nearly Incompressible Linear Elasticity

被引:0
作者
Xuehai Huang
Jianguo Huang
机构
[1] Wenzhou University,College of Mathematics and Information Science
[2] Shanghai Jiao Tong University,Department of Mathematics, and MOE
[3] E-Institute of Shanghai Universities,LSC
[4] Shanghai Normal University,Division of Computational Science
来源
Journal of Scientific Computing | 2013年 / 56卷
关键词
Nearly incompressible linear elasticity; Discontinuous Galerkin method; CDG method; Error analysis; Post-processing;
D O I
暂无
中图分类号
学科分类号
摘要
A compact discontinuous Galerkin method (CDG) is devised for nearly incompressible linear elasticity, through replacing the global lifting operator for determining the numerical trace of stress tensor in a local discontinuous Galerkin method (cf. Chen et al., Math Probl Eng 20, 2010) by the local lifting operator and removing some jumping terms. It possesses the compact stencil, that means the degrees of freedom in one element are only connected to those in the immediate neighboring elements. Optimal error estimates in broken energy norm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document}-norm and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm are derived for the method, which are uniform with respect to the Lamé constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda .$$\end{document} Furthermore, we obtain a post-processed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\text{ div})$$\end{document}-conforming displacement by projecting the displacement and corresponding trace of the CDG method into the Raviart–Thomas element space, and obtain optimal error estimates of this numerical solution in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\text{ div})$$\end{document}-seminorm and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm, which are uniform with respect to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda .$$\end{document} A series of numerical results are offered to illustrate the numerical performance of our method.
引用
收藏
页码:291 / 318
页数:27
相关论文
共 58 条
[1]  
Arnold DN(2002)Unified analysis of discontinuous Galerkin methods for elliptic problems SIAM J. Numer. Anal. 39 1749-1779
[2]  
Brezzi F(1984)PEERS: a new mixed finite element for plane elasticity Jpn. J. Appl. Math. 1 347-367
[3]  
Cockburn B(1992)Locking effects in the finite element approximation of elasticity problems Numer. Math. 62 439-463
[4]  
Marini LD(1992)On locking and robustness in the finite element method SIAM J. Numer. Anal. 29 1261-1293
[5]  
Arnold DN(1982)On the rates of convergence of the finite element method Int. J. Numer. Methods Eng. 18 323-341
[6]  
Brezzi F(2004)Korn’s inequalities for piecewise Math. Comput. 73 1067-1087
[7]  
Babuška I(1992) vector fields Math. Comput. 59 321-338
[8]  
Suri M(1985)Linear finite element methods for planar linear elasticity Numer. Math. 47 217-235
[9]  
Babuška I(2000)Two families of mixed finite elements for second order elliptic problems Numer. Methods Partial Differ. Equ. 16 365-378
[10]  
Suri M(2011)Discontinuous Galerkin approximations for elliptic problems Comput. Methods Appl. Mech. Eng. 200 1543-1557