Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind

被引:3
作者
Azmoodeh E. [1 ]
Viitasaari L. [2 ]
机构
[1] Mathematics Research Unit, Luxembourg University, P.O. Box L-1359, Luxembourg-Kirchberg
[2] Department of Mathematics and System Analysis, Aalto University School of Science, Helsinki, P.O. Box 11100, Aalto
关键词
Central limit theorem (CLT); Fractional Ornstein–Uhlenbeck processes; Malliavin calculus; Multiple Wiener integrals; Parameter estimation;
D O I
10.1007/s11203-014-9111-8
中图分类号
学科分类号
摘要
Fractional Ornstein–Uhlenbeck process of the second kind (fOU2) is a solution of the Langevin equation (Formula presented.) with a Gaussian driving noise (Formula presented.), where (Formula presented.) and B is a fractional Brownian motion with Hurst parameter H∈(0,1). In this article we consider the case H>12, and by using the ergodicity of fOU2 process we construct consistent estimators for the drift parameter θ based on discrete observations in two possible cases:(i) the Hurst parameter H is known and (ii) the Hurst parameter H is unknown. Moreover, using Malliavin calculus techniques we prove central limit theorems for our estimators which are valid for the whole range H∈(12,1). © 2014, Springer Science+Business Media Dordrecht.
引用
收藏
页码:205 / 227
页数:22
相关论文
共 50 条
[41]   An Exponential Nonuniform Berry-Esseen Bound for the Fractional Ornstein-Uhlenbeck Process [J].
Jiang, Hui ;
Zhou, Jingying .
JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) :1037-1058
[42]   Statistical analysis of the non-ergodic fractional Ornstein–Uhlenbeck process with periodic mean [J].
Rachid Belfadli ;
Khalifa Es-Sebaiy ;
Fatima-Ezzahra Farah .
Metrika, 2022, 85 :885-911
[43]   Optimal Berry-Esseen bound for an estimator of parameter in the Ornstein-Uhlenbeck process [J].
Yoon Tae Kim ;
Hyun Suk Park .
Journal of the Korean Statistical Society, 2017, 46 :413-425
[44]   Optimal Berry-Esseen bound for an estimator of parameter in the Ornstein-Uhlenbeck process [J].
Kim, Yoon Tae ;
Park, Hyun Suk .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (03) :413-425
[45]   Trajectory fitting estimation for integrated Ornstein-Uhlenbeck process driven by Lévy process [J].
Zhang, Xuekang ;
Wu, Xiaotai .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2025, 54 (09) :2565-2577
[46]   Least squares type estimations for discretely observed nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind [J].
Xie, Huantian ;
Kuang, Nenghui .
AIMS MATHEMATICS, 2022, 7 (01) :1095-1114
[47]   Statistical analysis of the non-ergodic fractional Ornstein-Uhlenbeck process with periodic mean [J].
Belfadli, Rachid ;
Es-Sebaiy, Khalifa ;
Farah, Fatima-Ezzahra .
METRIKA, 2022, 85 (07) :885-911
[48]   Parameter Estimation for the Fractional Hawkes Process [J].
Habyarimana, Cassien ;
Aduda, Jane A. ;
Scalas, Enrico .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
[49]   Parameter estimation of nonlinear map based on second-order discrete variational method [J].
Cao Xiao-Qun .
ACTA PHYSICA SINICA, 2013, 62 (08)
[50]   Parameter estimation for linear fractional stable noise process [J].
Ye, ZP ;
Dang, CY .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2005, 14 (02) :233-247