Parameter estimation based on discrete observations of fractional Ornstein–Uhlenbeck process of the second kind

被引:3
|
作者
Azmoodeh E. [1 ]
Viitasaari L. [2 ]
机构
[1] Mathematics Research Unit, Luxembourg University, P.O. Box L-1359, Luxembourg-Kirchberg
[2] Department of Mathematics and System Analysis, Aalto University School of Science, Helsinki, P.O. Box 11100, Aalto
关键词
Central limit theorem (CLT); Fractional Ornstein–Uhlenbeck processes; Malliavin calculus; Multiple Wiener integrals; Parameter estimation;
D O I
10.1007/s11203-014-9111-8
中图分类号
学科分类号
摘要
Fractional Ornstein–Uhlenbeck process of the second kind (fOU2) is a solution of the Langevin equation (Formula presented.) with a Gaussian driving noise (Formula presented.), where (Formula presented.) and B is a fractional Brownian motion with Hurst parameter H∈(0,1). In this article we consider the case H>12, and by using the ergodicity of fOU2 process we construct consistent estimators for the drift parameter θ based on discrete observations in two possible cases:(i) the Hurst parameter H is known and (ii) the Hurst parameter H is unknown. Moreover, using Malliavin calculus techniques we prove central limit theorems for our estimators which are valid for the whole range H∈(12,1). © 2014, Springer Science+Business Media Dordrecht.
引用
收藏
页码:205 / 227
页数:22
相关论文
共 50 条