Nash inequality for diffusion processes associated with Dirichlet distributions

被引:0
作者
Feng-Yu Wang
Weiwei Zhang
机构
[1] Tianjin University,Center for Applied Mathematics
[2] Swansea University,Department of Mathematics
[3] Beijing Normal University,School of Mathematical Sciences
来源
Frontiers of Mathematics in China | 2019年 / 14卷
关键词
Dirichlet distribution; Nash inequality; super Poincaré inequality; diffusion process; 60J60; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
For any N ⩾ 2 and α = (α1,…, αN+1) ∈ (0, ∞)N+1, let µa(n) be the Dirichlet distribution with parameter α on the set Δ(N):= [x ∈ [0,1]N: Σ1⩽i⩽Nxi ⩽ ]. The multivariate Dirichlet diffusion is associated with the Dirichlet form Eα(N)(f,f):=∑n=1N∫Δ(N)(1−∑1⩽i⩽Nxi)xn(∂nf)2(x)μα(N)(dx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E}_\alpha ^{(N)}(f,f): = \sum\limits_{n = 1}^N {\int_{{\Delta ^{(N)}}} {\left( {1 - \sum\limits_{1 \leqslant i \leqslant N} {{x_i}} } \right){x_n}{{({\partial _n}f)}^2}(x)\mu _\alpha ^{(N)}} (dx)}$$\end{document} with Domain D(Eα(N))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal D}({\mathcal E}_\alpha ^{(N)})$$\end{document} being the closure of C1(Δ(N)). We prove the Nash inequality μα(N)(f2)CEα(N)(f,f)p/(p+1)μα(N)(|f|)2/(p+1),f∈D(Eα(N)),μα(N)(f)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _\alpha ^{(N)}({f^2})C{\mathcal E}_\alpha ^{(N)}{(f,f)^{p/(p + 1)}}\mu _\alpha ^{(N)}{(|f|)^{2/(p + 1)}},\;\;\;f \in {\mathcal D}({\mathcal E}_\alpha ^{(N)}),\mu _\alpha ^{(N)}(f) = 0,$$\end{document} for some constant C > 0 and p = (αN+1–1)+ + Σi=1N 1 V (2αi), where the constant p is sharp when max1⩽i⩽Nαi ⩽ 1/2 and αN+1 ⩾ 1. This Nash inequality also holds for the corresponding Fleming-Viot process.
引用
收藏
页码:1317 / 1338
页数:21
相关论文
共 50 条
  • [31] DIFFUSION PROCESSES ON PRINCIPAL BUNDLES AND DIFFERENTIAL OPERATORS ON THE ASSOCIATED BUNDLES
    王正栋
    郭懋正
    钱敏
    Science China Mathematics, 1992, (04) : 385 - 398
  • [32] Vector Quantization of LSF Parameters With a Mixture of Dirichlet Distributions
    Ma, Zhanyu
    Leijon, Arne
    Kleijn, W. Bastiaan
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2013, 21 (09): : 1777 - 1790
  • [33] DIRICHLET APPROXIMATION OF EQUILIBRIUM DISTRIBUTIONS IN CANNINGS MODELS WITH MUTATION
    Gan, Han L.
    Rollin, Adrian
    Ross, Nathan
    ADVANCES IN APPLIED PROBABILITY, 2017, 49 (03) : 927 - 959
  • [34] Prior and Posterior Dirichlet Distributions on Bayesian Networks (BNs)
    Saputro, Dewi Retno Sari
    Widyaningsih, Purnami
    Handayani, Feri
    Kurdhi, Nughthoh Arfawi
    STATISTICS AND ITS APPLICATIONS, 2017, 1827
  • [35] Online Data Clustering Using Variational Learning of a Hierarchical Dirichlet Process Mixture of Dirichlet Distributions
    Fan, Wentao
    Bouguila, Nizar
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, 2014, 8505 : 18 - 32
  • [36] Eliciting Dirichlet and Gaussian copula prior distributions for multinomial models
    Fadlalla G. Elfadaly
    Paul H. Garthwaite
    Statistics and Computing, 2017, 27 : 449 - 467
  • [37] On the consistency of Bayes estimates for the infinite continuous mixture of Dirichlet distributions
    Boukabour, Seloua
    Masmoudi, Afif
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (05): : 1534 - 1547
  • [38] Eliciting Dirichlet and Connor–Mosimann prior distributions for multinomial models
    Fadlalla G. Elfadaly
    Paul H. Garthwaite
    TEST, 2013, 22 : 628 - 646
  • [39] Eliciting Dirichlet and Gaussian copula prior distributions for multinomial models
    Elfadaly, Fadlalla G.
    Garthwaite, Paul H.
    STATISTICS AND COMPUTING, 2017, 27 (02) : 449 - 467
  • [40] NONLINEAR ESTIMATION OF MISSING ΔLSF PARAMETERS BY A MIXTURE OF DIRICHLET DISTRIBUTIONS
    Ma, Zhanyu
    Martin, Rainer
    Guo, Jun
    Zhang, Honggang
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,