Nash inequality for diffusion processes associated with Dirichlet distributions

被引:0
作者
Feng-Yu Wang
Weiwei Zhang
机构
[1] Tianjin University,Center for Applied Mathematics
[2] Swansea University,Department of Mathematics
[3] Beijing Normal University,School of Mathematical Sciences
来源
Frontiers of Mathematics in China | 2019年 / 14卷
关键词
Dirichlet distribution; Nash inequality; super Poincaré inequality; diffusion process; 60J60; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
For any N ⩾ 2 and α = (α1,…, αN+1) ∈ (0, ∞)N+1, let µa(n) be the Dirichlet distribution with parameter α on the set Δ(N):= [x ∈ [0,1]N: Σ1⩽i⩽Nxi ⩽ ]. The multivariate Dirichlet diffusion is associated with the Dirichlet form Eα(N)(f,f):=∑n=1N∫Δ(N)(1−∑1⩽i⩽Nxi)xn(∂nf)2(x)μα(N)(dx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal E}_\alpha ^{(N)}(f,f): = \sum\limits_{n = 1}^N {\int_{{\Delta ^{(N)}}} {\left( {1 - \sum\limits_{1 \leqslant i \leqslant N} {{x_i}} } \right){x_n}{{({\partial _n}f)}^2}(x)\mu _\alpha ^{(N)}} (dx)}$$\end{document} with Domain D(Eα(N))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal D}({\mathcal E}_\alpha ^{(N)})$$\end{document} being the closure of C1(Δ(N)). We prove the Nash inequality μα(N)(f2)CEα(N)(f,f)p/(p+1)μα(N)(|f|)2/(p+1),f∈D(Eα(N)),μα(N)(f)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _\alpha ^{(N)}({f^2})C{\mathcal E}_\alpha ^{(N)}{(f,f)^{p/(p + 1)}}\mu _\alpha ^{(N)}{(|f|)^{2/(p + 1)}},\;\;\;f \in {\mathcal D}({\mathcal E}_\alpha ^{(N)}),\mu _\alpha ^{(N)}(f) = 0,$$\end{document} for some constant C > 0 and p = (αN+1–1)+ + Σi=1N 1 V (2αi), where the constant p is sharp when max1⩽i⩽Nαi ⩽ 1/2 and αN+1 ⩾ 1. This Nash inequality also holds for the corresponding Fleming-Viot process.
引用
收藏
页码:1317 / 1338
页数:21
相关论文
共 50 条
  • [21] On Pearson-Kotz Dirichlet distributions
    Balakrishnan, N.
    Hashorva, E.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (05) : 948 - 957
  • [22] Spectral condition, hitting times and Nash inequality
    Loecherbach, Eva
    Loukianov, Oleg
    Loukianova, Dasha
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (04): : 1213 - 1230
  • [23] Formal Context Generation Using Dirichlet Distributions
    Felde, Maximilian
    Hanika, Tom
    GRAPH-BASED REPRESENTATION AND REASONING (ICCS 2019), 2019, 11530 : 57 - 71
  • [24] Scale mixtures of Kotz-Dirichlet distributions
    Balakrishnan, N.
    Hashorva, E.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 113 : 48 - 58
  • [25] Exact and approximate distributions for the product of Dirichlet components
    Nadarajah, S
    Kotz, S
    KYBERNETIKA, 2004, 40 (06) : 735 - 744
  • [26] On the sub-Gaussianity of the Beta and Dirichlet distributions
    Marchal, Olivier
    Arbel, Julyan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
  • [27] Probabilistic distance measures of the Dirichlet and Beta distributions
    Rauber, T. W.
    Braun, T.
    Berns, K.
    PATTERN RECOGNITION, 2008, 41 (02) : 637 - 645
  • [28] (p, q)-Sobolev inequality and Nash inequality on compact Finsler metric measure manifolds
    Cheng, Xinyue
    Ni, Qihui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 549 (02)
  • [29] An inequality for multiple convolutions with respect to Dirichlet probability measure
    Grinshpan, Arcadii Z.
    ADVANCES IN APPLIED MATHEMATICS, 2017, 82 : 102 - 119
  • [30] Shifted Dirichlet Distributions as Second-Order Probability Distributions that Factors into Marginals
    Sundgren, David
    Ekenberg, Love
    Danielson, Mats
    ISIPTA '09: PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY: THEORIES AND APPLICATIONS, 2009, : 405 - +