A Nonsmooth Optimization Approach for Hemivariational Inequalities with Applications to Contact Mechanics

被引:0
作者
Michal Jureczka
Anna Ochal
机构
[1] Jagiellonian University in Krakow,Faculty of Mathematics and Computer Science
来源
Applied Mathematics & Optimization | 2021年 / 83卷
关键词
Nonmonotone friction; Optimization problem; Error estimate; Finite element method; Numerical simulations; 35Q74; 49J40; 65K10; 65M60; 74S05; 74M15; 74M10; 74G15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce an abstract nonsmooth optimization problem and prove existence and uniqueness of its solution. We present a numerical scheme to approximate this solution. The theory is later applied to a sample static contact problem describing an elastic body in frictional contact with a foundation. This contact is governed by a nonmonotone friction law with dependence on normal and tangential components of displacement. Finally, computational simulations are performed to illustrate obtained results.
引用
收藏
页码:1465 / 1485
页数:20
相关论文
共 27 条
[1]  
Barboteu M(2013)An analytical and numerical approach to a bilateral contact problem with nonmonotone friction Int. J. Appl. Math. Comput. Sci. 23 263-276
[2]  
Bartosz K(2014)Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction Commun. Contemp. Math. 16 1350016-2905
[3]  
Kalita P(2019)On numerical approximation of a variational-hemivariational inequality modeling contact problems for locking materials Comput. Math. Appl. 77 2894-289
[4]  
Barboteu M(2003)Generalized monotonicity and convexity of non-differentiable functions J. Math. Anal. Appl. 279 276-286
[5]  
Bartosz K(2019)Numerical analysis of hemivariational inequalities in contact mechanics Acta Numerica 28 175-663
[6]  
Kalita P(2017)Numerical analysis of elliptic hemivariational inequalities SIAM J. Numer. Anal. 55 640-592
[7]  
Ramadan A(2018)Numerical analysis of stationary variational-hemivariational inequalities Numer. Mathe. 139 563-35
[8]  
Barboteu M(1997)Finite element approximation of vector-valued hemivariational problems J. Glob. Optim. 10 17-178
[9]  
Han W(2017)A class of variational-hemivariational inequalities in reflexive Banach spaces J. Elast. 127 151-162
[10]  
Migórski S(1964)An efficient method for finding the minimum of a function of several variables without calculating derivatives Comput. J. 7 155-undefined