On the thermal buckling of simply supported rectangular plates made of a sigmoid functionally graded Al/Al2O3 based material

被引:0
作者
H. A. Atmane
E. A. A. Bedia
M. Bouazza
A. Tounsi
A. Fekrar
机构
[1] Université de Sidi Bel Abbès,Laboratoire des Matériaux et Hydrologie
[2] Univesité Hassiba Benbouali de Chlef,Département de génie civil, Faculté des Sciences de l’Ingénieur
[3] Universitaire de Bechar,Département de Génie civil
来源
Mechanics of Solids | 2016年 / 51卷
关键词
S-FGM plate; Al/Al; O; buckling; aspect ratio; temperature; material gradient index;
D O I
暂无
中图分类号
学科分类号
摘要
We study the thermal buckling of a simply supported sigmoid functionally graded (SFGM) rectangular plate using first-order shear deformation theory. The S-FGM system consists of ceramic (Al2O3) and metal (Al) phases varying across the plate thickness according to a law described by two power-law functions. The effective properties of the composite are determined by the rule of mixtures, whose implementation is simpler than that of methods of micromechanics. The thermal heating is characterized by a uniform, linear, or sinusoidal temperature distribution across the plate thickness. The effects of the plate aspect ratio, the relative thickness, the gradient index, and the transverse shear on the buckling temperature difference are studied.
引用
收藏
页码:177 / 187
页数:10
相关论文
共 39 条
[1]  
Javaheri R.(2002)Thermal Buckling of Functionally Graded Plates AIAA J. 40 162-169
[2]  
Eslami M. R.(2002)First-Order-Theory-Based Thermoelastic Stability of Functionally Graded Circular Plateas AIAA J. 40 1444-1450
[3]  
Najafizadeh M. M.(2004)Thermal Buckling of a Simply SupportedModerately Thick Rectangular FGMPlate Compos. Struct. 64 211-218
[4]  
Eslami M. R.(1973)Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions Acta Metall. 21 571-574
[5]  
Lanhe Wu.(1965)A Self-Consistent Mechanics of Composite Materials J. Mech. Phys. Solids 13 213-222
[6]  
Mori T.(2009)Free Vibration Analysis of Sandwich Beam with FG Core Using the Element Free GalerkinMethod Comp. Struct. 90 373-379
[7]  
Tanaka K.(2001)Transient Thermal Stress Analysis of an Edge Crack in a Functionally Graded Material Int. J. Fract. 107 73-98
[8]  
Hill R.(2008)A Theoretical Analysis of FGM Thin Plates Based on Physical Neutral Surface Comp.Mater. Sci. 44 716-720
[9]  
Amirani M. C.(2003)Exact Solutions for Characterization of Electro-Elastically GradedMaterials Comp. Mater. Sci. 28 548-555
[10]  
Khalili S. M. R.(1996)Stress Intensity Relaxation at the Tip of an Edge Crack in a Functionally Graded Material Subjected to a Thermal Shock J. Therm. Stresses 19 317-339