Deficient Values of Solutions of Linear Differential Equations

被引:0
作者
Gary G. Gundersen
Janne Heittokangas
Zhi-Tao Wen
机构
[1] University of New Orleans,Department of Mathematics
[2] University of Eastern Finland,Department of Physics and Mathematics
[3] Shantou University,Department of Mathematics
[4] Taiyuan University of Technology,Department of Mathematics
来源
Computational Methods and Function Theory | 2021年 / 21卷
关键词
Finite order; Logarithmic order; Linear differential equation; Nevanlinna deficient value; Valiron deficient value; Primary 34M05; Secondary 34M10; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
Differential equations of the form f′′+A(z)f′+B(z)f=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'' + A(z)f' + B(z)f = 0$$\end{document} (*) are considered, where A(z) and B(z)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(z) \not \equiv 0$$\end{document} are entire functions. The Lindelöf function is used to show that for any ρ∈(1/2,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in (1/2, \infty )$$\end{document}, there exists an equation of the form (*) which possesses a solution f with a Nevanlinna deficient value at 0 satisfying ρ=ρ(f)≥ρ(A)≥ρ(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =\rho (f)\ge \rho (A)\ge \rho (B)$$\end{document}, where ρ(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (h)$$\end{document} denotes the order of an entire function h. It is known that such an example cannot exist when ρ≤1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \le 1/2$$\end{document}. For smaller growth functions, a geometrical modification of an example of Anderson and Clunie is used to show that for any ρ∈(2,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho \in (2, \infty )$$\end{document}, there exists an equation of the form (*) which possesses a solution f with a Valiron deficient value at 0 satisfying ρ=ρlog(f)≥ρlog(A)≥ρlog(B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =\rho _{\log }(f)\ge \rho _{\log }(A)\ge \rho _{\log }(B)$$\end{document}, where ρlog(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{\log }(h)$$\end{document} denotes the logarithmic order of an entire function h. This result is essentially sharp. In both proofs, the separation of the zeros of the indicated solution plays a key role. Observations on the deficient values of solutions of linear differential equations are also given, which include a discussion of Wittich’s theorem on Nevanlinna deficient values, a modified Wittich theorem for Valiron deficient values, consequences of Gol’dberg’s theorem, and examples to illustrate possibilities that can occur.
引用
收藏
页码:145 / 177
页数:32
相关论文
共 15 条
  • [1] Anderson JM(1966)Slowly growing meromorphic functions Comment. Math. Helv. 40 267-280
  • [2] Clunie J(1988)A note on the zero-sequences of solutions of linear differential equations Results Math. 13 1-12
  • [3] Bank S(2006)On meromorphic functions with finite logarithmic order Trans. Am. Math. Soc. 358 473-489
  • [4] Chern PT-Y(1959)On the growth of meromorphic functions with several deficient values Trans. Am. Math. Soc. 93 292-328
  • [5] Edrei A(2012)New findings on the Bank–Sauer approach in oscillation theory Constr. Approx. 35 345-361
  • [6] Fuchs W(1988)Finite order solutions of second order linear differential equations Trans. Am. Math. Soc. 305 415-429
  • [7] Gröhn J(1998)The possible orders of solutions of linear differential equations with polynomial coefficients Trans. Am. Math. Soc. 350 1225-1247
  • [8] Heittokangas J(1972)On the Valiron deficiencies of integral functions of infinite order Ark. Mat. 10 163-172
  • [9] Gundersen GG(1970)Valiron deficient values for meromorphic functions in the plane Acta Math. 124 1-8
  • [10] Gundersen GG(1951)Sur les valeurs déficientes des fonctions algébroïdes méromorphes J. Anal. Math. 1 28-42