Characteristics of Wave Propagation in The Saturated Thermoelastic Porous Medium

被引:0
作者
Tao Haibing
Liu Ganbin
Xie Kanghe
Zheng Rongyue
Deng Yuebao
机构
[1] Zhejiang University,Research Center of Coastal and Urban Geotechnical Engineering
[2] Ningbo University,Faculty of Architectural Civil Engineering and Environment
来源
Transport in Porous Media | 2014年 / 103卷
关键词
Fluid–saturated soil; Thermo-elastic wave; Coupling effect; Wave velocity; Character attenuation;
D O I
暂无
中图分类号
学科分类号
摘要
Took into consideration the coupling effect of thermo, hydraulics and mechanics, a set of thermo–hydro-mechanical coupled wave equations for fluid–saturated soil are developed. In these wave equations, the P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document}-wave in solid phase and P4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{4}$$\end{document}-wave in fluid phase are coupled into T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}-wave in fluid–saturated soil by the assumption that the temperature of the solid phase is equal to the temperature of liquid phase at the same position. The dispersion equations for the thermo-elastic wave, which can be degraded to the equations for elastic wave in fluid–saturated soil, are derived from the above equations by introducing four potential functions. Then, these equations are solved numerically. The characteristics of wave phase velocity, attenuation and the effect of thermal expansion, initial temperature and porosity, etc., on phase velocities of P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{1}$$\end{document}-, P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{2}$$\end{document}-, and T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}-wave are discussed. As a reference, the characteristics of the propagation of elastic waves in fluid–saturated soil are also studied. The computation results show that (1) the phase velocity of P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{1}$$\end{document}-wave obtained by the theory of thermoporoelascity (THM) is faster than that by the theory of poroelasticity (HM); (2) the attenuation of P1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{1}$$\end{document}-wave obtained by either the theory of THM or HM are consistent; (3) the dissemination characteristics of P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{2}$$\end{document}-wave are almost consistent; (4) the phase velocity of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}-wave is the slowest among the three compressional waves; and (5) The attenuation versus frequency characteristic of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}-wave is similar to that of P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{2}$$\end{document}-wave.
引用
收藏
页码:47 / 68
页数:21
相关论文
共 45 条
[1]  
Aoudi M(2007)A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion Int. J. Solids Struct. 44 5711-5722
[2]  
Belotserkovets A(2011)Thermoporoelastic response of a fluid–fluid-saturated porous sphere: an analytical solution Int. J. Eng. Sci. 49 1415-1423
[3]  
Prevost JH(1956)Theory of propagation of elastic waves in a fluid fluid–saturated porous solid. I. Low frequency range. II. Higher frequency range J. Acoust. Soc. Am. 28 168-191
[4]  
Biot MA(1956)Thermoelasticity and irreversible thermo-dynamics J. Appl. Phys. 27 240-253
[5]  
Biot MA(1997)Experimental analysis of the effects of fluid–solid couplings on the velocity of elastic waves in fluid–saturated porous medium Geotechnique 47 993-1008
[6]  
Gajo A(1972)Thermoelasticity J. Elast. 2 1-7
[7]  
Fedel A(2005)Validation of the local thermal equilibrium assumption in forced convection of non-newtonian fluids through porous channels Transp. Porous Med. 61 291-305
[8]  
Mongiovi L(2009)Model of nonlinear coupled thermo–hydro-elastodynamics response for a fluid–saturated poroelastic medium Sci. China (Ser. E) 52 2373-2383
[9]  
Green AE(2010)Mode of a spherical cavity’s thermo-elastodynamic response in a fluid–saturated porous medium for non-torsional loads Comput. Geotech. 37 381-390
[10]  
Lindsay KA(2010)The relaxation effects of a fluid–saturated porous medium using the generalized thermoviscoelasticity theory Int. J. Eng. Sci. 48 795-808