An integrated modelling and optimization approach for the selection of process parameters for variable power consumption machining processes

被引:0
作者
Shailendra Pawanr
Girish Kant Garg
Srikanta Routroy
机构
[1] Birla Institute of Technology and Science,Mechanical Engineering Department
来源
Journal of the Brazilian Society of Mechanical Sciences and Engineering | 2023年 / 45卷
关键词
End facing; Variable power consumption; Energy consumption; Machine tools; Multi-objective optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Manufacturing industries are under intense pressure to reduce the energy usage of the machining processes without sacrificing productivity, owing to the fast-rising worldwide market and environmental issues. Variable-power consumption machining processes are highly complex than constant-power consumption machining processes, owing to change in one of the process parameters, i.e. cutting speed during end facing. Besides, integrated modelling and optimization of the variable power consumption machining processes for energy-saving have not received attention, consequently, industry deployment of energy-saving solutions is impeded. To bridge these gaps, in this work, the empirical model developed by the author is integrated for the formulation of a multi-objective optimization model of cutting energy consumption (Ecdry\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{{\mathrm{c}}_{\mathrm{dry}}}$$\end{document}) and average-material removal rate (MRR¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{MRR} }$$\end{document}) expressed by process parameters. First, the optimal parameters are determined for Ecdry\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}_{\mathrm{c}}}_{\mathrm{dry}}$$\end{document} and MRR¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{MRR} }$$\end{document} by mono-objective optimization using the Taguchi technique. Second, Grey relational analysis coupled with the Taguchi method is used to obtain the cumulative performance index of the Ecdry\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}_{\mathrm{c}}}_{\mathrm{dry}}$$\end{document} and MRR¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{MRR} }$$\end{document}, and to determine their common optimal parameters, resulting in better-compromised decisions. The MRR¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathrm{MRR} }$$\end{document} improves to 99.97% with only a 10.08% increase in Ecdry\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}_{\mathrm{c}}}_{\mathrm{dry}}$$\end{document} on common optimal parameters compared to optimal parameters with mono optimization of Ecdry\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{E}_{\mathrm{c}}}_{\mathrm{dry}}$$\end{document}. Further, analysis of variance revealed that all considered process parameters have statistical significance, and depth of cut is the most significant parameter followed by spindle speed, feed rate and tool nose radius. It was found that energy consumption values predicted by the integrated modelling and optimization approach are close to the experimental values.
引用
收藏
相关论文
共 50 条
  • [41] Swarm Intelligent Selection and Optimization of Machining System Parameters for Microchannel Fabrication in Medical Devices
    Vazquez, Elisa
    Ciurana, Joaquim
    Rodriguez, Ciro A.
    Thepsonthi, Thanongsak
    Oezel, Tugrul
    [J]. MATERIALS AND MANUFACTURING PROCESSES, 2011, 26 (03) : 403 - 414
  • [42] An approach to the influence of the machining process on power consumption and surface quality during the milling of 304L austenitic stainless steel
    Bousnina, K.
    Hamza, A.
    Ben Yahia, N.
    [J]. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES, 2022, 16 (03) : 9093 - 9109
  • [43] Multi-objective Machining Parameters Optimization for Low Energy and Minimum Cutting Fluid Consumption
    Ma F.
    Zhang H.
    Cao H.
    [J]. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2017, 53 (11): : 157 - 163
  • [44] Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm
    Rao, R. V.
    Pawar, P. J.
    Shankar, R.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2008, 222 (08) : 949 - 958
  • [45] Optimization of process parameters in micro electrochemical machining using TOPSIS technique with Analytical Hierarchy Process (AHP)
    Siva, M.
    ArunKumar, N.
    Ganesh, M.
    Sathishkumar, N.
    [J]. ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [46] Multi-Objective Optimization of Wire Electro Discharge Machining (WEDM) Process Parameters Using Grey-Fuzzy Approach
    Das, Partha Protim
    Diyaley, Sunny
    Chakraborty, Shankar
    Ghadai, Ranjan Kumar
    [J]. PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING, 2019, 63 (01): : 16 - 25
  • [47] Development of energy consumption model of abrasive machining process by a combined evolutionary computing approach
    Vijayaraghavan, R.
    Garg, A.
    Vijayaraghavan, V.
    Gao, Liang
    [J]. MEASUREMENT, 2015, 75 : 171 - 179
  • [48] Multi-objective optimization of grinding process parameters for improving gear machining precision
    You, Tong-fei
    Han, Jiang
    Tian, Xiao-qing
    Tang, Jian-ping
    Lu, Yi-guo
    Li, Guang-hui
    Xia, Lian
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2025, : 538 - 551
  • [49] Machining characteristics and optimization of process parameters in die-sinking EDM of Inconel 625
    Dikshit, Mithilesh K.
    Anand, Jatin
    Narayan, Devesh
    Jindal, Subham
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (07)
  • [50] Optimization of Machining Parameters in Milling Process of Inconel 718 under Surface Roughness Constraints
    Wu, Tian-Yau
    Lin, Chi-Chen
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 15