New Quantization Method for Evaluation of Eigenenergies

被引:0
作者
Asiri Nanayakkara
Nimali Ranatunga
机构
[1] Institute of Fundamental Studies,
来源
International Journal of Theoretical Physics | 2002年 / 41卷
关键词
WKB; quantization; schroedinger equation; eigenenergies;
D O I
暂无
中图分类号
学科分类号
摘要
A quantum dynamical equation is constructed as the limit of a sequence of functions (called Semiquantum momentum functions or SQMF). The quantum action variable J is defined as the limit of the sequence of contour integrals of SQMFs such that the quantization condition is J = nħ, where n is a nonnegative integer for eigenvalues and a noninteger for off eigenvalues. This quantization condition is exact and J is an analytic function of energy. Based on new definitions, an accurate numerical method is developed for obtaining eigenenergies. The method can be applied to both real and PT symmetric complex potentials. The validity and the accuracy of this new method is demonstrated with three illustrations.
引用
收藏
页码:1355 / 1368
页数:13
相关论文
共 54 条
  • [1] Balsa R.(1983)undefined Physical Review D: Particles and Fields 28 1945-L36
  • [2] Plo M.(2001)undefined Journal of Physics A: Mathematical and General 34 L31-undefined
  • [3] Esteve J. G.(1977)undefined Physical Review D: Particles and Fields 16 1740-undefined
  • [4] Pacheco A. F.(1997)undefined Journal of Mathematical Physics 38 5483-undefined
  • [5] Bender C. M.(1982)undefined Journal of Physics A: Mathematical and General 15 429-undefined
  • [6] Berry M.(1996)undefined Communications in Mathematical Physics 176 1-undefined
  • [7] Meisinger P. N.(1994)undefined Physics Letters A 187 140-undefined
  • [8] Savage V. M.(1997)undefined Journal of Mathematical Physics 38 6126-undefined
  • [9] Simsek M.(1997)undefined Annals of Physics 261 180-undefined
  • [10] Bender C. M.(1983)undefined American Journal of Physics 51 561-undefined