A comprehensive study on Milne-type inequalities with tempered fractional integrals

被引:2
|
作者
Haider, Wali [1 ]
Budak, Huseyin [2 ]
Shehzadi, Asia [1 ]
Hezenci, Fatih [2 ]
Chen, Haibo [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[2] Duzce Univ, Fac Sci & Arts, Dept Math, Duzce, Turkiye
关键词
Inequalities of Milne type; Fractional version; Tempered fractional integrals; Convex functions; DIFFERENTIABLE MAPPINGS;
D O I
10.1186/s13661-024-01855-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the framework of tempered fractional integrals, we obtain a fundamental identity for differentiable convex functions. By employing this identity, we derive several modifications of fractional Milne inequalities, providing novel extensions to the domain of tempered fractional integrals. The research comprehensively examines significant functional classes, including convex functions, bounded functions, Lipschitzian functions, and functions of bounded variation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Generalized Hermite - Hadamard Type Integral Inequalities for Fractional Integrals
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    FILOMAT, 2016, 30 (05) : 1315 - 1326
  • [32] An extensive study on parameterized inequalities for conformable fractional integrals
    Hezenci, Fatih
    Budak, Huseyin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (05)
  • [33] SOME PARAMETERIZED INEQUALITIES ARISING FROM THE TEMPERED FRACTIONAL INTEGRALS INVOLVING THE (μ,n)-INCOMPLETE GAMMA FUNCTIONS
    Cao, Yu
    Cao, Jifeng
    Tan, Pinzheng
    Du, Tingsong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (03): : 1091 - 1121
  • [34] Hermite-Hadamard type inequalities for fractional integrals via Green's function
    Khan, Muhammad Adil
    Iqbal, Arshad
    Suleman, Muhammad
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [35] Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann-Liouville fractional integrals
    Budak, Huseyin
    Pehlivan, Ebru
    AIMS MATHEMATICS, 2020, 5 (03): : 1960 - 1984
  • [36] New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals
    Budak, Huseyin
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 369 - 386
  • [37] ON HERMITE-HADAMARD TYPE INEQUALITIES VIA KATUGAMPOLA FRACTIONAL INTEGRALS
    Yaldiz, H.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 773 - 785
  • [38] New Hermite-Hadamard-type inequalities for fractional integrals and their applications
    Hwang, Shiow-Ru
    Tseng, Kuei-Lin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1211 - 1223
  • [39] ON THE BULLEN-TYPE INEQUALITIES VIA GENERALIZED FRACTIONAL INTEGRALS AND THEIR APPLICATIONS
    Du, Tingsong
    Luo, Chunyan
    Cao, Zhijie
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (07)
  • [40] Some Generalized Hadamard-Type Inequalities via Fractional Integrals
    Bayraktar, B.
    Attaev, A. Kh
    Kudaev, V. Ch
    RUSSIAN MATHEMATICS, 2021, 65 (02) : 1 - 14