F-theory and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 SCFTs in four dimensions

被引:0
作者
David R. Morrison
Cumrun Vafa
机构
[1] University of California Santa Barbara,Departments of Mathematics and Physics
[2] Harvard University,Jefferson Physical Laboratory
关键词
Conformal Field Models in String Theory; F-Theory;
D O I
10.1007/JHEP08(2016)070
中图分类号
学科分类号
摘要
Using the F-theory realization, we identify a subclass of 6d (1,0) SCFTs whose compactification on a Riemann surface leads to N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 4d SCFTs where the moduli space of the Riemann surface is part of the moduli space of the theory. In particular we argue that for a special case of these theories (dual to M5 branes probing ADE singularities), we obtain 4d N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 theories whose space of marginal deformations is given by the moduli space of flat ADE connections on a Riemann surface.
引用
收藏
相关论文
共 57 条
  • [1] Heckman JJ(2015) 6 Fortsch. Phys. 63 468-undefined
  • [2] Morrison DR(2015) 6 JHEP 11 002-undefined
  • [3] Rudelius T(2012) = (1 JHEP 08 034-undefined
  • [4] Vafa C(2012) 0) JHEP 06 005-undefined
  • [5] Bhardwaj L(2015) = 2 JHEP 07 014-undefined
  • [6] Gaiotto D(2015)Four-Dimensional SCFTs from M5-Branes JHEP 12 131-undefined
  • [7] Bah I(2015)6 JHEP 11 123-undefined
  • [8] Beem C(2016) = (1 JHEP 06 044-undefined
  • [9] Bobev N(1997) 0) Nucl. Phys. B 500 3-undefined
  • [10] Wecht B(1998) = (1 Adv. Theor. Math. Phys. 1 53-undefined