A note on some applications of the subspace theorem

被引:0
作者
Rishabh Agnihotri
Debasish Karmakar
Veekesh Kumar
机构
[1] Harish-Chandra Research Institute,
[2] HBNI,undefined
[3] Harish-Chandra Research Institute,undefined
[4] HBNI,undefined
[5] Institute of Mathematical Sciences,undefined
[6] HBNI,undefined
[7] C.I.T Campus,undefined
来源
Research in Number Theory | 2021年 / 7卷
关键词
Schmidt subspace theorem; Rational approximation; Primary 11J87; Secondary 11J68;
D O I
暂无
中图分类号
学科分类号
摘要
Let f(z)=∑n=0∞anzn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z) = \sum _{n=0}^{\infty } a_n z^n$$\end{document} be a power series with integer coefficients and converging in the disc D={z:|z|<R}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{ z : |z| < R \}$$\end{document} for some R>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R > 0$$\end{document}. In 1985, Laohakosol proved, using Ridout theorem, that the largest prime factors of partial sums of f(b) for a rational number 0<|b|<R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< |b| < R$$\end{document} is unbounded, if f(b) is a non-zero algebraic number. In this article, we prove, using the subspace theorem, similar results for other approximation of f(b). Moreover, we prove the number field analogue of Laohakosol’s result.
引用
收藏
相关论文
共 3 条
[1]  
Evertse JH(1996)An improvement of the quantitative subspace theorem Compos. Math. 101 225-311
[2]  
Laohakosol V(1985)An arithmetic property of the Taylor coefficients of analytic functions with an application to transcendental numbers Proc. Am. Math. Soc. 93 212-214
[3]  
Roth KF(1957)Rational approximations to algebraic numbers Mathematika 4 125-131