Homogenization of the Spectral Problem for Periodic Elliptic Operators with Sign-Changing Density Function

被引:0
作者
Sergey A. Nazarov
Iryna L. Pankratova
Andrey L. Piatnitski
机构
[1] Institute for Problems in Mechanical Engineering RAS,
[2] Narvik University College,undefined
[3] Ecole Polytechnique CNRS,undefined
[4] P. N. Lebedev Physical Institute RAS,undefined
来源
Archive for Rational Mechanics and Analysis | 2011年 / 200卷
关键词
Dirichlet Problem; Elliptic Operator; Spectral Problem; Negative Eigenvalue; Essential Spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the asymptotic behaviour of spectra of second order self-adjoint elliptic operators with periodic rapidly oscillating coefficients in the case when the density function (the factor on the spectral parameter) changes sign. We study the Dirichlet problem in a regular bounded domain and show that the spectrum of this problem is discrete and consists of two series, one of them tending towards +∞ and another towards −∞. The asymptotic behaviour of positive and negative eigenvalues and their corresponding eigenfunctions depends crucially on whether the average of the weight function is positive, negative or equal to zero. We construct the asymptotics of eigenpairs in all three cases.
引用
收藏
页码:747 / 788
页数:41
相关论文
共 17 条
  • [1] Allaire G.(2002)Uniform spectral asymptotics for singularly perturbed locally periodic operators Commun. Partial Differ. Equ. 27 705-725
  • [2] Piatnitski A.(2004)Homogenization of periodic systems with large potentials Arch. Ration. Mech. Anal. 174 179-220
  • [3] Allaire G.(1950)Expansion in characteristic functions of an equation with periodic coefficients Doklady Akad. Nauk SSSR (N.S.) 73 1117-1120
  • [4] Capdeboscq Y.(1979)Homogenization of elliptic eigenvalue problems: part 1 Appl. Math. Optim. 5 153-167
  • [5] Piatnitski A.(1979)Homogenization of elliptic eigenvalue problems: part 2 Appl. Math. Optim. 5 197-216
  • [6] Siess V.(2010)Homogenization of the spectral Dirichlet problem for a system of differential equations with rapidly oscillating coefficients and changing sign sensity J. Math. Sci. 169 212-248
  • [7] Vanninathan M.(1998)Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators J. Math. Sci. 92 4338-4353
  • [8] Gel’fand I.M.(1999)The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes Russ. Math. Surv. 54 947-1014
  • [9] Kesavan S.(2009)Asymptotics of negative eigenvalues of the Dirichlet problem with the density changing sign J. Math. Sci. 163 151-175
  • [10] Kesavan S.(1981)Homogenization of eigenvalue problems in perforated domains Proc. Indian Acad. Sci. (Math. Sci.) 90 239-271