The effect of a weak nonlinearity on the lowest cut-off frequencies of a cylindrical shell

被引:0
作者
I. V. Andrianov
J. Kaplunov
A. K. Kudaibergenov
L. I. Manevitch
机构
[1] RWTH Aachen University,Institut fur Allgemeine Mechanik
[2] Keele University,School of Computing and Mathematics
[3] Al-Farabi Kazakh National University,undefined
[4] Semenov Institute of Chemical Physics RAS,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2018年 / 69卷
关键词
Shell; Asymptotic; Nanotube; Nonlinear; Cut-off; 41 Approximations and expansions; 74 Mechanics of deformable solids;
D O I
暂无
中图分类号
学科分类号
摘要
The plane strain problem for a thin circular cylindrical shell is considered within the framework of the Sanders–Koiter theory. The relative shell thickness and displacement amplitude are chosen to be of the same asymptotic order. The leading nonlinear correction to the lowest cut-off frequencies is derived using the method of multiple scales. In contrast to the traditional two-mode Galerkin expansions assuming inextensibility of the shell transverse cross section, the developed fourth-order asymptotic scheme operates with five angular modes. The obtained results reveal asymptotic inconsistency of previous approximate solutions to the problem.
引用
收藏
相关论文
共 53 条
[1]  
Anantram M(2006)Physics of carbon nanotube electronic devices Rep. Prog. Phys. 69 507-561
[2]  
Leonard F(2014)Terahertz science and technology of carbon nanomaterials Nanotechnology 25 1-29
[3]  
Hartmann RR(2014)Low-frequency linear vibrations of single-walled carbon nanotubes: analytical and numerical models J. Sound Vib. 333 2936-2957
[4]  
Kono J(2016)Nonlinear optical vibrations of single-walled carbon nanotubes. 1. Energy exchange and localization of low-frequency oscillations Phys. D 325 113-125
[5]  
Portnoi ME(2016)Vibrations of an elastic cylindrical shell near the lowest cut-off frequency Proc. R. Soc. A 472 1-11
[6]  
Strozzi M(2017)A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell J. Sound Vib. 401 23-35
[7]  
Manevitch LI(2005)Trapped modes in curved elastic plates Proc. R. Soc. A 461 11811197-2757
[8]  
Pellicano F(1993)Plane vibrations and radiation of an elastic layer lying on a liquid half-space Wave Motion 17 199211-560
[9]  
Smirnov VV(2002)Long-wave vibrations of a nearly incompressible isotropic plate with fixed faces Q. J. Mech. Appl. Math. 55 345356-727
[10]  
Shepelev DS(2015)Small amplitude waves in a pre-stressed compressible elastic layer with one fixed and one free face Zeitschrift für angewandte Mathematik und Physik 66 2741-48