Automatic classification of ultrasound breast lesions using a deep convolutional neural network mimicking human decision-making

被引:0
作者
Alexander Ciritsis
Cristina Rossi
Matthias Eberhard
Magda Marcon
Anton S. Becker
Andreas Boss
机构
[1] University Hospital Zurich,Institute of Diagnostic and Interventional Radiology
来源
European Radiology | 2019年 / 29卷
关键词
Ultrasound; Breast; Artificial intelligence; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:5458 / 5468
页数:10
相关论文
共 71 条
  • [1] Akin O(2012)Advances in oncologic imaging: update on 5 common cancers CA Cancer J Clin 62 364-393
  • [2] Brennan SB(2011)Mammographic density and breast cancer risk: current understanding and future prospects Breast Cancer Res 13 223-444
  • [3] Dershaw DD(1991)Family history of breast cancer, mammographic features of breast tissue, and breast cancer risk Epidemiology 2 440-27
  • [4] Boyd NF(2015)Decline in breast cancer mortality: how much is attributable to screening? J Med Screen 22 20-2163
  • [5] Martin LJ(2008)Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer JAMA 299 2151-134
  • [6] Yaffe MJ(1995)Solid breast nodules: use of sonography to distinguish between benign and malignant lesions Radiology 196 123-742
  • [7] Minkin S(2010)Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts Eur Radiol 20 734-298
  • [8] Brisson J(2008)Observer variability of Breast Imaging Reporting and Data System (BI-RADS) for breast ultrasound Eur J Radiol 65 293-402
  • [9] Njor SH(2007)Observer agreement using the ACR Breast Imaging Reporting and Data System (BI-RADS)-ultrasound, first edition (2003) Korean J Radiol 8 397-961
  • [10] Schwartz W(2014)Consequences of false-positive screening mammograms JAMA Intern Med 174 954-75