Completely Independent Spanning Trees in Line Graphs

被引:0
作者
Toru Hasunuma
机构
[1] Tokushima University,Department of Mathematical Sciences
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Complete graphs; Completely independent spanning trees; Connectivity; Line graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Completely independent spanning trees in a graph G are spanning trees of G such that for any two distinct vertices of G, the paths between them in the spanning trees are pairwise edge-disjoint and internally vertex-disjoint. In this paper, we present a tight lower bound on the maximum number of completely independent spanning trees in L(G), where L(G) denotes the line graph of a graph G. Based on a new characterization of a graph with k completely independent spanning trees, we also show that for any complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} of order n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document}, there are ⌊n+12⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n+1}{2} \rfloor $$\end{document} completely independent spanning trees in L(Kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(K_n)$$\end{document} where the number ⌊n+12⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n+1}{2} \rfloor $$\end{document} is optimal, such that ⌊n+12⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lfloor \frac{n+1}{2} \rfloor $$\end{document} completely independent spanning trees still exist in the graph obtained from L(Kn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(K_n)$$\end{document} by deleting any vertex (respectively, any induced path of order at most n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{n}{2}$$\end{document}) for n=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 4$$\end{document} or odd n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 5$$\end{document} (respectively, even n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 6$$\end{document}). Concerning the connectivity and the number of completely independent spanning trees, we moreover show the following, where δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)$$\end{document} denotes the minimum degree of G.Every 2k-connected line graph L(G) has k completely independent spanning trees if G is not super edge-connected or δ(G)≥2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G) \ge 2k$$\end{document}.Every (4k-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(4k-2)$$\end{document}-connected line graph L(G) has k completely independent spanning trees if G is regular.Every (k2+2k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k^2+2k-1)$$\end{document}-connected line graph L(G) with δ(G)≥k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G) \ge k+1$$\end{document} has k completely independent spanning trees.
引用
收藏
相关论文
共 54 条
  • [1] Araki T(2014)Dirac’s condition for completely independent spanning trees J. Graph Theory 77 171-179
  • [2] Catlin PA(2009)Edge-connectivity and edge-disjoint spanning trees Discrete Math. 309 1033-1040
  • [3] Lai H-J(2021)Constructing completely independent spanning trees in data center network based on augmented cube IEEE Trans. Parallel Distrib. Syst. 32 665-673
  • [4] Shao Y(2021)Constructing dual-CISTs of folded divide-and-swap cubes Theor. Comput. Sci. 856 75-87
  • [5] Chen G(2006)Finding four independent trees SIAM J. Comput. 35 1023-1058
  • [6] Cheng B(1988)On computing a conditional edge-connectivity of a graph Inf. Process. Lett. 27 195-199
  • [7] Wang D(2014)Ore’s condition for completely independent spanning trees Discrete Appl. Math. 177 95-100
  • [8] Chang Y-H(2001)Completely independent spanning trees in the underlying graph of a line digraph Discrete Math. 234 149-157
  • [9] Pai K-J(2015)Structural properties of subdivided-line graphs J. Discrete Algorithms 31 69-86
  • [10] Hsu C-C(2012)Completely independent spanning trees in torus networks Networks 60 59-69