Even perfect numbers among generalized Fibonacci sequences

被引:2
作者
Facó V. [1 ]
Marques D. [1 ]
机构
[1] Departamento de Matemática, Universidade de Brasília, Brasília
来源
Rendiconti del Circolo Matematico di Palermo (1952 -) | 2014年 / 63卷 / 3期
关键词
Diophantine equations; Generalized Fibonacci sequences; Linear forms in logarithms; Perfect numbers;
D O I
10.1007/s12215-014-0165-7
中图分类号
学科分类号
摘要
A positive integer (Formula presented.) is said to be a perfect number, if (Formula presented.), where (Formula presented.) is the sum of all positive divisors of (Formula presented.). Luca (Rend Circ Mat Palermo Ser II 49:313–318, 2000) proved that there is no perfect number in the Fibonacci sequence. For (Formula presented.), the (Formula presented.)-generalized Fibonacci sequence (Formula presented.) is defined by the initial values ((Formula presented.) terms) and such that each term afterwards is the sum of the (Formula presented.) preceding terms. In this paper, we prove, among other things, that there is no even perfect numbers belonging to (Formula presented.)-generalized Fibonacci sequences when (Formula presented.). © 2014, Springer-Verlag Italia.
引用
收藏
页码:363 / 370
页数:7
相关论文
共 21 条
[1]  
Bravo J.J., Luca F., Powers of two in generalized Fibonacci sequences, Rev. Colomb. Mat, 46, pp. 67-79, (2012)
[2]  
Bravo J.J., Luca F., Coincidences in generalized Fibonacci sequences, J. Number Theory, 133, pp. 2121-2137, (2013)
[3]  
Bravo J.J., Luca F., On the largest prime factor of the (Formula presented.)-Fibonacci numbers, Int. J. Number Theory, 9, pp. 1351-1366, (2013)
[4]  
Bravo J.J., Luca F., On a conjecture about repdigits in $k$k-generalized Fibonacci sequences, Publ. Math. Debr. Fasc, 82, 3-4, pp. 623-639, (2013)
[5]  
Bugeaud Y., Mignotte M., Siksek S., Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers, Ann. Math, 163, pp. 969-1018, (2006)
[6]  
Cooper C., Howard F.T., Some identities for (Formula presented.)-Fibonacci numbers, Fibonacci Q, 49, 3, pp. 231-243, (2011)
[7]  
Dickson L.E., History of the Theory of Numbers. Divisibility and Primality, (1966)
[8]  
Dresden G.P., Du Z., A simplified Binet formula for $$k$$k-generalized Fibonacci numbers. J, Integer Seq. 17, 1–9 (2014) (no. 4, article 14, 4
[9]  
Dujella A., Petho A., A generalization of a theorem of Baker and Davenport, Q. J. Math. Oxf. Ser. (2), 49, pp. 291-306, (1998)
[10]  
Koshy T., Fibonacci and Lucas Numbers with Applications, (2001)